272K subscribers
3.94K photos
674 videos
17 files
4.53K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🧠 Awesome AGI Survey

Как Далеко Мы Находимся От AGI?

AGI (artificial general intelligence) – это область теоретических исследований искусственного интеллекта, которая стремится создать программное обеспечение с интеллектом, подобным человеческому, и способностью к самообучению.

AGI, отличается способностью выполнять разнообразные задачи в реальном мире с эффективностью, сравнимой с человеческим интеллектом, отражает важнейшую веху в развитии искусственного интеллекта.

Здесь представлен большой структурированный список обязательных к прочтению статей по AGI, на которые стоит обратить внимание.

Github

@ai_machinelearning_big_data
👍33🔥64🤨2🤣1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Moondream WebGPU — небольшая VLM, поддерживающая обработку изображений, работает локально в браузере

Moondream WebGPU — это VLM (Vision-Language Model) с 1.86 миллиардами параметров.
После загрузки модель (1.8 ГБ) будет кэширована и повторно использована при повторном посещении страницы.

Все выполняется непосредственно в браузере с помощью Transformers.js и ONNX Runtime Web, то есть ваши разговоры не отправляются на сервер.

🤗 Hugging Face

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍37🔥51🗿1
🌟 Verba — open-source приложение для обеспечения сквозного, оптимизированного и удобного интерфейса для Retrieval-Augmented Generation

pip install goldenverba

Verba — это полностью настраиваемый AI-помощник для запросов и взаимодействия с вашими данными, как локальными, так и развернутыми в облаке.
Отвечает на вопросы, связанные с вашими документами, получает информацию из существующих баз знаний. Verba сочетает в себе современные технологии RAG и контекстно-зависимую базу данных Weaviate. Выбирайте между различными фреймворками RAG, типами данных, методами разбивки и поиска и поставщиками LLM в зависимости от конкретного случая использования.

Позволяет использовать разные LLM: как от HuggingFace и Ollama, так и от OpenAI, Cohere и Google.

🖥 GitHub

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45🥰62🤔2🍾1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Farfalle — open-source поисковой AI-движок

Позволяет использовать локальные (llama3, gemma, mistral) или облачные (Groq/Llama3, OpenAI/gpt4-o) LLM.

🖥 GitHub
🟡 Запустить онлайн

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🔥82😍2❤‍🔥1🥰1
⚡️ PHUDGE3: Phi-3 как масштабируемая система оценивания LLM

В этой свежей статье Arxiv представляется PHUDGE — тонко настроенная модель Phi3, которая достигла результатов SOTA в 4 задачах: Feedback Test, Feedback OOD, MT Human, Preference Test, превзойдя все существующие модели по задержке и пропускной способности.
PHUDGE демонстрирует очень сильную корреляцию не только с GPT4, но и с человеческими аннотаторами на непросмотренных данных, а также в задачах абсолютного и относительного оценивания.

В этой статье Arxiv не только рассмотривается вопрос использования небольших LM для экономичных систем производственного уровня, но и показывается, что причинно-следственное моделирование не только медленно по своей природе, но иногда может препятствовать обучаемости моделей и должно быть заменено на более простые задачи, когда это возможно, чтобы сделать систему в целом быстрее и лучше.

📎 Arxiv

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14😁93🔥1
⚡️ Layer-Condensed KV Cache

Многослойный кэш-память KV для эффективного инференса больших языковых моделей.

Обеспечивает в 26 раз более высокую пропускную способность (throughput) по сравнению со стандартными трансформерами и помогает увеличить производительность больших языковых моделей.


pip install xformers --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt


repo: https://github.com/whyNLP/LCKV
abs: https://arxiv.org/abs/2405.10637

@ai_machinelearning_big_data
👍224🔥2
🦙 Llama3-from-scratch

Очень подробный гайд по созданию LLaMa-3 с нуля!

Крутой репозиторий, в котором реализована llama 3 с нуля - умножение матриц с помощью multiple heads, позиционное кодирование (способ кодирования позиции слова внутри эмбеддинга), реализация механизма внимания и все остальное, здесь тщательно описано и объяснено.

Отличный репо для обучения, 3 к звезд за сутки⭐️.

Github

@ai_machinelearning_big_data
🔥43👍123
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 GaussianObject: Just Taking Four Images to Get A High-Quality 3D Object with Gaussian Splatting

Только что был выпущен код для генерации 3D объектов с помощью Гауссовских сплатов.

Новый фреймворк обеспечивает высокое качество генераций и рендеринга всего по четырем входными изображениями.


git clone https://github.com/GaussianObject/GaussianObject.git --recursive


Github: https://github.com/GaussianObject/GaussianObject
Colab: https://colab.research.google.com/drive/1WIZgM--tJ3aq25t9g238JAuAoXrQYVMs?usp=sharing#scrollTo=TlrxF62GNePB
Project: https://gaussianobject.github.io

@ai_machinelearning_big_data
🔥22👍132
⚡️ SELF-DISCOVER — система для улучшения способности LLM рассуждать

Исследователи из Google DeepMind и Университета Южной Калифорнии представили революционный подход к повышению способности к рассуждению больших языковых моделей (LLM). Их новая система «SELF-DISCOVER», презентованная на этой неделе на arXiV и Hugging Face, обещает существенные улучшения в решении сложных задач рассуждениий, потенциально революционизируя производительность ведущих моделей, таких как GPT-4 от OpenAI и PaLM 2.

Система демонстрирует повышение производительности до 32% по сравнению с традиционными методами, такими как цепочка мыслей (CoT). Этот подход основан на том, что LLM самостоятельно раскрывают внутренние структуры рассуждений, присущие задачам, для решения сложных проблем, например таких, как критическое мышление или пошаговый анализ.

Имитируя человеческие стратегии решения проблем, эта система работает в два этапа. Первый этап включает в себя составление связной структуры рассуждений, свойственной задаче, с использованием набора атомарных модулей рассуждения и примеров задач. На втором этапе – во время декодирования, LLM следуют этой самообнаруженной структуре, чтобы прийти к окончательному решению.

В обширном тестировании различных задач на рассуждение, включая Big-Bench Hard, Thinking for Action и Math, предложенный подход неизменно превосходил традиционные методы. Примечательно, что с помощью GPT-4 он достиг точности 81%, 85% и 73% по трем задачам, превзойдя методы цепочки мыслей и планирования и решения.

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍34🔥106
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Devon — open-source AI-программист

curl -sSL https://raw.githubusercontent.com/entropy-research/Devon/main/install.sh | bash

Devon — AI-помощник, которого можно использовать для парного программирования;
open-source аналог Devin.
Использует API Anthropic, или OpenAI, или Groq

🖥 GitHub
🟡 Пример использования

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍264🔥2👏1🤔1