TrustLLM
— инструмент на Python
для комплексного исследования ответов от LLM. TrustLLM рассматривает 6 аспектов ответов: правдивость, безопасность, этичность, соблюдение конфиденциальности и другие.
В этом документе подробно объясняется, как использовать инструмент для оценки эффективности собственных моделей.
pip install trustllm
▪GitHub
▪Arxiv
▪Docs
▪Project
#llm
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23🔥8❤6
💥 New tools to help researchers study content authenticity by OpenAi
OpenAi запускает для тестов новый классификатор, который поможет идентифицировать контент, созданный DALLE 3.
В этом году они уже начали добавлять метаданные CPAN ко всем изображениям, созданным и отредактированным DALE 3, в ChatGPT и OpenAI API.
Они также планируют интегрировать метаданные C2PA для Sora, когда модель будет выпущена.
▪ Почитать подробнее можно здесь
#openai #dalle3
@ai_machinelearning_big_data
OpenAi запускает для тестов новый классификатор, который поможет идентифицировать контент, созданный DALLE 3.
В этом году они уже начали добавлять метаданные CPAN ко всем изображениям, созданным и отредактированным DALE 3, в ChatGPT и OpenAI API.
Они также планируют интегрировать метаданные C2PA для Sora, когда модель будет выпущена.
▪ Почитать подробнее можно здесь
#openai #dalle3
@ai_machinelearning_big_data
👍23❤4🔥4🌭3🤔1
➡ Новости: теперь вы можете публиковать свои модели прямо из Keras API в Kaggle или huggingface!
Вот руководство по началу работы на любой из платформ → https://developers.googleblog.com/en/publish-your-keras-models-on-kaggle-and-hugging-face/
#keras
@ai_machinelearning_big_data
Вот руководство по началу работы на любой из платформ → https://developers.googleblog.com/en/publish-your-keras-models-on-kaggle-and-hugging-face/
#keras
@ai_machinelearning_big_data
👍19❤3🔥2
🌟 Introduction to Granite Code Models
IBM выпустили Granite Code Models: семейство моделей Open Foundation для интеллектуального анализа и генерации кода
Все модели Granite Code выпущены под лицензией Apache 2.0.
Модели Granite превосходят модели с открытым исходным кодом по всем параметрам. На рисунке показано, как Granite-8B-CodeBase превосходит Mistral-7B, LLama-3-8B и другие модели с открытым исходным кодом в трех задачах кодинга. Полные оценки можно найти здесь.
Модели отлично справляются с задачами генерации кода, исправления багов объяснения кода, генерации документации к кода.
- Размер моделей варьируется от 3B до 34B параметров
- Обученных на 3-4 триллионах токенах, полученных из 116 языков программирования
▪Github: https://github.com/ibm-granite/granite-code-models
▪Paper: https://arxiv.org/abs/2405.04324
▪HF: https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec322e4c148c8b330
#llm #codegeneration
@ai_machinelearning_big_data
IBM выпустили Granite Code Models: семейство моделей Open Foundation для интеллектуального анализа и генерации кода
Все модели Granite Code выпущены под лицензией Apache 2.0.
Модели Granite превосходят модели с открытым исходным кодом по всем параметрам. На рисунке показано, как Granite-8B-CodeBase превосходит Mistral-7B, LLama-3-8B и другие модели с открытым исходным кодом в трех задачах кодинга. Полные оценки можно найти здесь.
Модели отлично справляются с задачами генерации кода, исправления багов объяснения кода, генерации документации к кода.
- Размер моделей варьируется от 3B до 34B параметров
- Обученных на 3-4 триллионах токенах, полученных из 116 языков программирования
▪Github: https://github.com/ibm-granite/granite-code-models
▪Paper: https://arxiv.org/abs/2405.04324
▪HF: https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec322e4c148c8b330
#llm #codegeneration
@ai_machinelearning_big_data
👍31🔥10❤7🆒1
🔉 AudioSeal is the state of art audio watermarking model
Audio Seal - это SOTA для добавления метаданных на аудио и распознавания их, предназначенная для локального распознавания речи, сгенерированной искусственным интеллектом.
Инструмент прост в настройке и работает молниеносно.
Audioseal обеспечивает самые современные характеристики распознавания как естественной, так и синтетической речи, обеспечивает незначительное изменение качества сигнала и устойчив ко многим типам редактирования аудио.
Audioseal значительно превосходит существующие модели по скорости обнаружения.
▪Github: https://github.com/facebookresearch/audioseal
▪Paper: https://arxiv.org/abs/2401.17264
▪Colab: https://colab.research.google.com/github/facebookresearch/audioseal/blob/master/examples/colab.ipynb
▪HF: https://huggingface.co/facebook/audioseal
#audio
@ai_machinelearning_big_data
Audio Seal - это SOTA для добавления метаданных на аудио и распознавания их, предназначенная для локального распознавания речи, сгенерированной искусственным интеллектом.
Инструмент прост в настройке и работает молниеносно.
Audioseal обеспечивает самые современные характеристики распознавания как естественной, так и синтетической речи, обеспечивает незначительное изменение качества сигнала и устойчив ко многим типам редактирования аудио.
Audioseal значительно превосходит существующие модели по скорости обнаружения.
pip install audioseal
▪Github: https://github.com/facebookresearch/audioseal
▪Paper: https://arxiv.org/abs/2401.17264
▪Colab: https://colab.research.google.com/github/facebookresearch/audioseal/blob/master/examples/colab.ipynb
▪HF: https://huggingface.co/facebook/audioseal
#audio
@ai_machinelearning_big_data
👍25🔥7❤6👾1
🚀 На Хабре вышел гайд о том, как внедрять YandexGPT API в свои продукты
Команда AllSee показала, как они реализовали SDK для быстрой интеграции YandexGPT в python-приложение. Попутно показали, что модель даёт похожий на ChatGPT результат по метрикам, но при этом её дешевле использовать в своих проектах.
Пользуйтесь )
▪️ Habr: https://habr.com/ru/articles/812979/
@ai_machinelearning_big_data
Команда AllSee показала, как они реализовали SDK для быстрой интеграции YandexGPT в python-приложение. Попутно показали, что модель даёт похожий на ChatGPT результат по метрикам, но при этом её дешевле использовать в своих проектах.
Пользуйтесь )
▪️ Habr: https://habr.com/ru/articles/812979/
@ai_machinelearning_big_data
😁23👍17❤4🤔3🔥2🗿1💘1
🧬 AlphaFold 3 predicts the structure and interactions of all of life’s molecules
Google DeepMind представили Alpha Fold3, новую модель искусственного интеллекта, которая предсказывает структуру и взаимодействия молекул.
Благодаря точному прогнозированию структуры белков, ДНК, РНК и многого другого, а также того, как они взаимодействуют, наше понимание биологического мира может выйти на новый уровень, а в практическом применение поможет разработке новых лекарств.
Эта революционная модель, может предсказывать структуру и взаимодействия всех молекул жизни с беспрецедентной точностью.
На основе входного списка молекул Alpha Fold3 генерирует их общую трехмерную структуру, показывая, как они сочетаются друг с другом. Программа моделирует крупные биомолекулы, такие как белки, ДНК и РНК, а также небольшие молекулы, также известные как лиганды.
Кроме того, Alpha Fold3 может моделировать химические модификации этих молекул, которые контролируют здоровое функционирование клеток, нарушение которых может привести к различным заболеваниям.
Ученые со всего мира могут работать с AlphaFold 3 совершенно бесплатно.
▪Blog: https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/
▪Nature: https://www.nature.com/articles/s41586-024-07487-w
▪Two Minute Papers: https://www.youtube.com/watch?v=Mz7Qp73lj9o
@ai_machinelearning_big_data
Google DeepMind представили Alpha Fold3, новую модель искусственного интеллекта, которая предсказывает структуру и взаимодействия молекул.
Благодаря точному прогнозированию структуры белков, ДНК, РНК и многого другого, а также того, как они взаимодействуют, наше понимание биологического мира может выйти на новый уровень, а в практическом применение поможет разработке новых лекарств.
Эта революционная модель, может предсказывать структуру и взаимодействия всех молекул жизни с беспрецедентной точностью.
На основе входного списка молекул Alpha Fold3 генерирует их общую трехмерную структуру, показывая, как они сочетаются друг с другом. Программа моделирует крупные биомолекулы, такие как белки, ДНК и РНК, а также небольшие молекулы, также известные как лиганды.
Кроме того, Alpha Fold3 может моделировать химические модификации этих молекул, которые контролируют здоровое функционирование клеток, нарушение которых может привести к различным заболеваниям.
Ученые со всего мира могут работать с AlphaFold 3 совершенно бесплатно.
▪Blog: https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/
▪Nature: https://www.nature.com/articles/s41586-024-07487-w
▪Two Minute Papers: https://www.youtube.com/watch?v=Mz7Qp73lj9o
@ai_machinelearning_big_data
🔥43👍16❤7
⚡️ You Only Cache Once: Decoder-Decoder Architectures for Large Language Models
Microsoft только что представили инструмент You Only Cache Once: Decoder-Decoder : архитектура Decoder-Decoder для больших языковых моделей
YOCO существенно снижает потребление памяти GPU и состоит из двух компонентов - cross decoder'а, объединенного с
значений ключей (KV), которые повторно используются cross decoder'ом с механизмом cross-attention.
Результаты экспериментов показывают, что YOCO достигает более высокой производительности по сравнению с архитектурой Трансформеров при различных настройках масштабирования размера модели и количества обучающих токенов, подробнее тут.
▪Github: https://github.com/microsoft/unilm/tree/master/YOCO
▪ABS: https://arxiv.org/abs/2405.05254
#microsoft
@ai_machinelearning_big_data
Microsoft только что представили инструмент You Only Cache Once: Decoder-Decoder : архитектура Decoder-Decoder для больших языковых моделей
YOCO существенно снижает потребление памяти GPU и состоит из двух компонентов - cross decoder'а, объединенного с
self-decoder'ом.
Self-decoder
кодирует глобальные кэшизначений ключей (KV), которые повторно используются cross decoder'ом с механизмом cross-attention.
Результаты экспериментов показывают, что YOCO достигает более высокой производительности по сравнению с архитектурой Трансформеров при различных настройках масштабирования размера модели и количества обучающих токенов, подробнее тут.
▪Github: https://github.com/microsoft/unilm/tree/master/YOCO
▪ABS: https://arxiv.org/abs/2405.05254
#microsoft
@ai_machinelearning_big_data
🔥37👍16❤5🎉1