281K subscribers
3.95K photos
676 videos
17 files
4.54K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⚡️ AI Safety — бенчмарк для оценки безопасности AI

Некоммерческий проект MLCommons, занимающийся созданием и поддержкой бенчмарков, широко используемых в ИИ-индустрии, анонсировал новую разработку. Речь идёт об инструменте — AI Safety v0.5, позволяющем оценивать безопасность ИИ-систем.

AI Safety v0.5 находится на стадии proof-of-concept и позволяет оценивать большие языковые модели (LLM), стоящие за современными чат-ботами, анализируя ответы на запросы из «опасных категорий». Необходимость в появлении такого инструмента давно назрела, поскольку технологию оказалось довольно легко использовать в неблаговидных и даже опасных целях. Например, можно применять для подготовки фишинговых атак и совершения других киберпреступлений, а также для распространения дезинформации и разжигания ненависти.

Хотя измерить безопасность довольно сложно с учётом того, что ИИ используется в самых разных целях, в MLCommons создали инструмент, способный разбираться с широким спектром угроз. Например, он может оценивать, как бот отвечает на запрос о рецептах изготовления бомбы, что отвечать полиции, если пойман за созданием взрывного устройства и т.п. Каждая модель «допрашивается» серией тестовых запросов, ответы на которые потом подлежат проверке. LLM оценивается как по каждой из категорий угроз, так и по уровню безопасности в целом.

Бенчмарк включает более 43 тыс. промтов. Методика позволяет классифицировать угрозы, конвертируя ответы в понятные даже непрофессионалам характеристики, вроде «высокий риск», «умеренно-высокий риск» и т.д. При этом представители организации заявляют, что LLM чрезвычайно трудно оценивать по ряду причин.

Бенчмарк AI Safety v0.5 уже доступен для экспериментов и организация надеется, что исходные тесты сообществом позволят выпустить усовершенствованную версию v1.0 позже в этом году. Платформа открыта для предложений новых тестов и интерпретации результатов.

▶️ Страничка проекта

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍123🔥2🤔2👌1
⚡️ Поисковик Brave научился отвечать на вопросы с помощью ИИ

Ориентированная на конфиденциальность поисковая система Brave расширила функциональность своей системы ответов на запросы пользователей с помощью ИИ.

Теперь при вводе запроса в Brave в поле выдачи сперва отображается выжимка от AI с ссылками на источники, и только потом сайты.
Выглядит наподобие Perplexity и Phind.

▶️ Пробуйте)

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍224🔥4🤬2🌭1
🪄👕 Magic Clothing: controllable garment-driven image synthesis

Вышла модель Waifu Dress Up 2024!

Magic Clothing позволяет создавать персонажей, одетых в заданную одежду, на основе промпта и входного изображения.

git clone https://github.com/ShineChen1024/MagicClothing.git

Github
Paper

@ai_machinelearning_big_data
👍16🔥73🤔2
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 AI Image Generator: Create images from text.

Новое поколение
#Photoshop уже здесь.

Adobe добавили ИИ-инструменты в Photoshop на базе новой модели Firefly Image 3. Модель может самостоятельно подобрать или изменить фон, сгенерировать похожие изображения, генерировать изображения из промптов.

Полный список обновлений здесь.

Blog
Demo

@ai_machinelearning_big_data
👍13🔥76❤‍🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️🗣 OpenVoice V2 - a Text-to-Speech model that can clone any voice and speak in any language.

OpenVoice V2 - новая версия открытой модели преобразования текста в речь, которая позволяет клонировать любой голос и генерировать речь на различных языках.

Github: https://github.com/myshell-ai/OpenVoice/tree/main
Usage: https://github.com/myshell-ai/OpenVoice/blob/main/docs/USAGE.md

@ai_machinelearning_big_data
👍25🔥85
🍏 OpenELM: An Efficient Language Model Family with Open-source Training and Inference Framework by Apple

Сегодня Apple выпустили Openly.

- Новое семейство LM с открытым исходным кодом для обучения моделей и логического вывода
- Работает наравне с OLMo, но требует в 2 раза меньше токенов для обучения
- Модели для различных задач, включая базовые модели (например, CLIP и LLM), классификацию объектов, обнаружение объектов и семантическую сегментацию.

Cписок моделей и подробная информации о каждой из них:

- OpenELM-270M
- OpenELM-450M
- OpenELM-1_1B
- OpenELM-3B
- OpenELM-270M-Instruct
- OpenELM-450M-Instruct
- OpenELM-1_1B-Instruct
- OpenELM-3B-Instruct

gitHub: https://github.com/apple/corenet
hf: https://huggingface.co/apple/OpenELM
abs: https://arxiv.org/abs/2404.14619

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥22👍113
🖼 HiDiffusion: Unlocking High-Resolution Creativity and Efficiency in Low-Resolution Trained Diffusion Models 🦊

Новый метод, не требующий обучения, который повышает о и скорость предварительно обученных моделей diffusion.

Его можно интегрировать в конвейеры diffusion, добавив всего одну строку кода!

pip3 install hidiffusion


page: https://hidiffusion.github.io
paper: https://arxiv.org/abs/2311.17528
code: https://github.com/megvii-research/HiDiffusion
colab: https://colab.research.google.com/drive/1EiBn9lSnPZTU4cikRRaBBexs429M-qty?usp=sharing

@ai_machinelearning_big_data
👍21🔥54
PyTorch 2.3 is here 😎🔥

Вышел PyTorch 2.3
.

В PyTorch 2.3 реализована поддержка пользовательских ядер Triton в torch.compile, что позволяет пользователям переносить свои собственные ядра Triton без снижения производительности или сбоев в графике.

Triton – это языковой компилятор для создания сильно оптимизированных ядер CUDA.

В этом выпуске зафиксировано 3393 изменений.

Полный список обновлений: https://pytorch.org/blog/pytorch2-3/

@ai_machinelearning_big_data
👍37🔥165❤‍🔥3
📌Apple приобрела компанию Datakalab, занимающуюся проектами на базе ИИ

🟡Apple купила французский стартап Datakalab, который специализируется на технологиях сжатия данных искусственного интеллекта и компьютерного зрения.

🟡Datakalab позиционирует себя как «эксперта в области маломощных эффективных алгоритмов глубокого обучения», работающих на устройствах. Стартап создаёт алгоритмы для анализа изображений и видео. Один из продуктов компании — инструмент для отслеживания наличия масок на лицах пассажиров общественного транспорта Парижа.
Полученные стартапом изображения мгновенно преобразуются в анонимные статистические данные, обрабатываемые локально за 100 мс. Стартап не хранит изображения или личные данные, а только статистические данные.

🟡Datakalab имеет несколько патентов, связанных с технологиями сжатия данных ИИ и машинного зрения.

🟡Приобретение стартапа, вероятно, обусловлено планами Apple предоставить набор ИИ-функций в iOS 18. Datakalab разработала передовую технологию на базе машинного обучения, которая может сыграть роль в развитии гарнитуры смешанной реальности Vision Pro.
Кстати, в начале 2024 года корпорация купила стартап WaveOne, который предлагает ИИ-алгоритм для сжатия видео.

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥12👍117🤔6
🔥 FlowMap: High-Quality Camera Poses, Intrinsics, and Depth via Gradient Descent

Массачусетский технологический университет представил FlowMap.

Это новый комплексный дифференцируемый метод для реконструкции 3D сцены, который позволяет точно задать ракурсы камеры, характеристики движения и глубину видеоряда для каждого кадра.

FlowMap позволяет создавать реалистичные ракурсы на 360°.

Github: https://github.com/dcharatan/flowmap
Paper: https://arxiv.org/abs/2404.15259
Dataset: https://drive.google.com/drive/folders/1PqByQSfzyLjfdZZDwn6RXIECso7WB9IY

@ai_machinelearning_big_data
👍26🔥84
⚡️ UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition

Модель распознавания математических выражений (MER).

git clone https://github.com/opendatalab/UniMERNet.git

Github: https://github.com/opendatalab/unimernet
Paper: https://arxiv.org/abs/2404.15254
HF: https://huggingface.co/wanderkid/unimernet

@ai_machinelearning_big_data
👍26🔥73