280K subscribers
3.95K photos
675 videos
17 files
4.54K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🔥 Yolo8 is coming!

На github вылложили веса.
Обновилась документация.

🖥 Github
✔️ Docs
🖥 Colab

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥39👍94👎3😍2
🔥 MIT Introduction to Deep Learning

2023 Program has started!

Сегодня стартует бесплатный курс от MIT Intro to DL 2023 — один из самых лаконичных, открытых курсов по искусственному интеллекту, который охватывает основные методы глубокого обучения, архитектуры инс, статистику.

🚀 Course
✔️ Course 2022

@ai_machinelearning_big_data
🔥29👍71👏1
This media is not supported in your browser
VIEW IN TELEGRAM
🔊 Audio-Visual Efficient Conformer for Robust Speech Recognition

Улучшенный метод чтения по губам, с помощью архитектуры Conformer Connectionist Temporal Classification (CTC) для обработки аудио и видео.

🖥 Github
✔️ Paper
🔥Notebook
🚀 Models

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥28👍31
This media is not supported in your browser
VIEW IN TELEGRAM
😫 Memories are One-to-Many Mapping Alleviators in Talking Face Generation

Новый проект от Microsoft, реалистичная генерация говорящего аватара ​по входным аудиодорожкам.
MemFace обеспечивает наилучшее качество с большим отрывом.

🖥 Project
📃 Paper
📊Video

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥11👍62
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Neural Deferred Shading

Новая быстрая многоракурсная 3D-реконструкция с произвольными объектами и настраиваемым освещением.

🖥 Github: github.com/fraunhoferhhi/neural-deferred-shading

⭐️ Project: fraunhoferhhi.github.io/neural-deferred-shading

✅️ Paprer: https://mworchel.github.io/assets/papers/neural_deferred_shading_with_supp.pdf

Pyremesh : https://github.com/sgsellan/botsch-kobbelt-remesher-libigl

❤️Video: https://www.youtube.com/watch?v=nIqmuylmpFY

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥17👍91
📚 Free Book Multimodal Deep Learning 2023

This book is the result of a student seminar for Master Statistics and Master Data Science at the LMU in the summer semester 2022

Полезная книга , которая поможет разобраться с мультимодальными моделями общего назначения, изучить их архитектуру, работу и применение, в том числе в
генеративном искусстве.

📘 Book
🖥 Github
Reading list

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16🔥32👎1
🖼 Image Similarity with Hugging Face Datasets and Transformers

In this post, you'll learn to build an image similarity system wich Transformers.

Полезная статья, с которой вы создадите систему поиска сходства изображений с помощью Transformers. Можно немного попрактиковаться и попробовать другие модели.

🤗 Huggingface
🖥 Github
🖥 Colab

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥22👍111👏1
This media is not supported in your browser
VIEW IN TELEGRAM
AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling

Autoregressive approach for modeling dynamically deforming human bodies by Meta.

AutoAvatar — проект от Meta для моделирования динамически деформирующихся человеческих тел непосредственно из необработанных сканов.

🖥 Github: github.com/facebookresearch/AutoAvatar

⭐️ Project: zqbai-jeremy.github.io/autoavatar

✅️ Paprer: arxiv.org/pdf/2203.13817.pdf

Dataset: https://amass.is.tue.mpg.de/index.html

⭐️ Video: https://zqbai-jeremy.github.io/autoavatar/static/images/video_arxiv.mp4

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥21🌭1
👨‍🎓 CS224W: Machine Learning with Graphs Free Course from Stanford

Topics include: representation learning and Graph Neural Networks; algorithms for the World Wide Web; reasoning over Knowledge Graphs; influence maximization; disease outbreak detection, social network analysis.

Шикарный бесплатный курс от Стенфорда, с которым вы изучите структуру графов и их особенности и применения в мо, научитесь строить графовые нейронные сети. Новые лекции, колабы и слайды выходят по вторникам и четвергам.

🔥 Course 2023
📌 Video Lectures 2021
🤗Intro to Graph Machine Learning

ai_machinelearning_big_data
48👍10🔥32🤣2
💬 GLIGEN: Open-Set Grounded Text-to-Image Generation

GLIGEN’s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.

GLIGEN новый подход, который основывается на существующих предварительно обученных моделях генерации текста из изображения и расширяет их функциональность. GLIGEN значительно превосходит все существующие модели.

⭐️ Project: https://gligen.github.io/

⭐️ Demo: https://aka.ms/gligen

✅️ Paper: https://arxiv.org/abs/2301.07093

🖥 Github: https://github.com/gligen/GLIGEN

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥41
🎧 Msanii: High Fidelity Music Synthesis on a Shoestring Budget

Model combines the expressiveness of mel spectrograms, the generative capabilities of diffusion models, and the vocoding capabilities of neural vocoders.

Новая модель на основе диффузии для эффективного синтеза длинной музыки высокого качества.

pip install -q git+https://github.com/Kinyugo/msanii.git

🖥 Github: https://github.com/kinyugo/msanii

⭐️ Demo: https://kinyugo.github.io/msanii-demo/

⭐️ Colab: https://colab.research.google.com/github/Kinyugo/msanii/blob/main/notebooks/msanii_demo.ipynb

✅️ Paper: https://arxiv.org/abs/2301.06468

🤗Hugging face: https://huggingface.co/spaces/kinyugo/msanii

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17🔥51
Media is too big
VIEW IN TELEGRAM
Multiview Compressive Coding for 3D Reconstruction

Multiview Compressive Coding (MCC), learns to compress the input appearance and geometry to predict the 3D structure by querying a 3D-aware decoder

MCC — это новый подход к 3D-реконструкции по одному изображению RGB-D .

pip install h5py omegaconf submitit

🖥 Github: https://github.com/facebookresearch/mcc

⭐️ Project: https://mcc3d.github.io/

✅️ Paper: https://arxiv.org/abs/2301.08247

⭐️ Dataset: https://github.com/facebookresearch/MCC/blob/main/DATASET.md

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥51
🔥 Deep Learning Tuning Playbook

This document is for engineers and researchers (both individuals and teams) interested in maximizing the performance of deep learning models.

Этот репозиторий-книга от специалистов Google Research
с практическими советами по максимальному повышению производительности моделей глубокого обучения.

🖥 Github
📌Reddit

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥178👍51
✏️ Improving Sketch Colorization using Adversarial Segmentation Consistency

New method for producing color images from sketches

Новый метод генерации реалистичных, цветных изображений из эскизов. эффективность модели была проверена на 4 различных, крупных датасетов изображений.


git clone https://github.com/giddyyupp/AdvSegLoss.git
cd AdvSegLoss


🖥 Github: https://github.com/giddyyupp/AdvSegLoss

✅️ Paper: https://arxiv.org/abs/2301.08590v1

⭐️ Dataset: https://paperswithcode.com/dataset/cityscapes

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍101🔥1
Media is too big
VIEW IN TELEGRAM
⭐️ OnePose++: One-Shot Pose

Keypoint-free one-shot object pose estimation method that handles low-textured objects without knowing CAD models.

Новый метод захвата объектов без ключевых точек, который значительно превосходит существующие методы и может работать с низкотекстурированными объектами.


🖥 Github: https://github.com/zju3dv/OnePose_Plus_Plus

✅️ Paper: https://openreview.net/pdf?id=BZ92dxDS3tO

⭐️ Project: https://zju3dv.github.io/onepose_plus_plus

Dataset: https://zjueducn-my.sharepoint.com/:f:/g/personal/12121064_zju_edu_cn/ElfJC7FiK75Hhh1CF0sPVSQBdzJpeWpOfj8TZzRuxo9PUg?e=Pbnbi8

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥41
Media is too big
VIEW IN TELEGRAM
Пришло время астропрогнозов на 2023! В новом видео ⬆️

Наши аналитики сформулировали предсказания будущих угроз для корпораций на основе сложившихся трендов и действий злоумышленников, которые мы наблюдали в уходящем году.

▶️Каких атак ждать корпорациям в начавшемся году?
▶️Что изменится в поведении взломщиков?
▶️Как противостоять шантажу и утечкам ПД?
▶️Почему злоумышленники публикуют данные о взломах в общем доступе?

У нас есть ответы на эти и другие вопросы в 1,5-минутном видео⬆️
Для тех, кто любит поподробнее — презентация с массой полезных данных.

Смотреть презентацию⟶
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3😁1
🔬 Stanford.Game Theory Free Course

The course will provide the basics: representing games and strategies, the extensive form, Bayesian games, repeated and stochastic games, and more.

🎲 Еще несколько отличных курсов от Стенфорда.
Вы изучите: математический метод нахождения оптимальных стратегий в играх, байесовские игры, повторяющиеся и стохастические игры, теория социального выбора, аукционы и многое другое

Game Theory
Game Theory II: Advanced
Deep Multi-Task and Meta Learning
Game Theory for Machine Learning
Algorithmic Game Theory

@ai_machinelearning_big_data
🔥11👍85
This media is not supported in your browser
VIEW IN TELEGRAM
✅️ StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis

StyleGAN-T, addresses the specific requirements of large-scale text-to-image synthesis, such as large capacity, stable training on diverse datasets, strong text alignment, and controllable fidelity vs. text alignment tradeoff.

StyleGAN-T новый ган для синтеза текста и изображений.

StyleGAN-T значительно превосходит предыдущие GANы и модели дистиллированной диффузии в скорости и качестве генерации текста в изображение.

🖥 Github: github.com/autonomousvision/stylegan-t

✅️ Paper: arxiv.org/pdf/2301.09515.pdf

⭐️ Project: sites.google.com/view/stylegan-t

✔️ Video: https://www.youtube.com/watch?v=MMj8OTOUIok&embeds_euri=https%3A%2F%2Fsites.google.com%2F&feature=emb_logo

🖥 Projected GAN: https://github.com/autonomousvision/projected-gan

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥211👎1