Группа инженеров из Google DeepMind опубликовали 12-ю главу своего он-лайн учебника "How to Scale Your Model: A Systems View of LLMs on TPUs"
How to Scale Your Model - практико-ориентированное руководство по масштабированию LLM из 12 разделов для разработчиков и исследователей. Оно объясняет, как анализировать и оптимизировать производительность модели, учитывая системные ресурсы: вычисления, память и пропускную способность.
Пособие научит выбирать оптимальные стратегии параллелизма, оценивать стоимость и время обучения и инференса, а также глубже понять взаимодействие между TPU/GPU и алгоритмами масштабирования как на одном, так и на тысячах ускорителей.
12-я глава - глубокое техническое руководство по архитектуре GPU и стратегиям масштабирования больших моделей. В ней детально разбирается устройство современных GPU NVIDIA: Streaming Multiprocessors, Tensor Cores, иерархия памяти (HBM, L2, SMEM), все это с подробными сравнительными таблицами характеристик для разных поколений чипов.
Очень подробно выполнено сравнение архитектур GPU и TPU, с объясняем ключевого различия между модульностью GPU и монолитностью TPU.
Особое внимание, что редкость для обучающих материалов, уделено сетевой организации кластеров. Авторы доступно объясняют как GPU соединяются внутри узлов через NVLink/NVSwitch и между узлами через InfiniBand в топологии "Fat tree", и как пропускная способность на каждом уровне влияет на реальную производительность коллективных операций (AllReduce, AllGather).
Описаны основные стратегии параллелизма: Data Parallelism, Tensor Parallelism, Expert Parallelism и Pipeline Parallelism, с разбором их ограничений и примеров из реальных проектов.
В конце главы есть хороший анализ новых возможностей архитектуры Blackwell.
@ai_machinelearning_big_data
#AI #ML #LLM #Scaling #GPU #TPU
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍67❤38🔥18🥰5
🦎 Эволюция ИИ моделей, вдохновленная природой
В Sakana AI предложили новый подход: развивать ИИ не как один гигантский «мозг», а как экосистему моделей, которые конкурируют, объединяются и обмениваются навыками.
Этот метод они назвали M2N2 (Model Merging of Natural Niches).
🔑 Как это работает
- Гибкие границы слияния — модели объединяются не фиксированными слоями, а переменными кусками параметров, как будто меняются фрагментами ДНК.
- Конкуренция за данные — модели соревнуются за ограниченные ресурсы и становятся «экспертами» в узких областях.
- Выбор партнёров — для объединения подбираются те модели, которые дополняют друг друга: одна сильна там, где другая слаба.
📊 Чего удалось добиться
- С нуля: только слиянием случайных сетей удалось получить классификатор MNIST, сравнимый с классическими эволюционными методами, но быстрее и дешевле.
- Крупные LLM: объединение модели-«математика» и модели-«агента» породило систему, которая уверенно справляется с обоими типами задач.
- Мультимодальные модели: при слиянии text-to-image моделей для японского итоговая версия стала лучше понимать японские запросы и при этом сохранила сильный английский — без «забывания» старых навыков.
Этот подход показывает, что будущее ИИ может быть не за одним огромным монолитом, а за живой экосистемой специализированных моделей, которые эволюционируют вместе, обмениваются сильными сторонами и становятся более гибкими и креативными.
🟠 Paper: https://arxiv.org/abs/2508.16204
🟠 Code: https://github.com/SakanaAI/natural_niches
@ai_machinelearning_big_data
В Sakana AI предложили новый подход: развивать ИИ не как один гигантский «мозг», а как экосистему моделей, которые конкурируют, объединяются и обмениваются навыками.
Этот метод они назвали M2N2 (Model Merging of Natural Niches).
🔑 Как это работает
- Гибкие границы слияния — модели объединяются не фиксированными слоями, а переменными кусками параметров, как будто меняются фрагментами ДНК.
- Конкуренция за данные — модели соревнуются за ограниченные ресурсы и становятся «экспертами» в узких областях.
- Выбор партнёров — для объединения подбираются те модели, которые дополняют друг друга: одна сильна там, где другая слаба.
📊 Чего удалось добиться
- С нуля: только слиянием случайных сетей удалось получить классификатор MNIST, сравнимый с классическими эволюционными методами, но быстрее и дешевле.
- Крупные LLM: объединение модели-«математика» и модели-«агента» породило систему, которая уверенно справляется с обоими типами задач.
- Мультимодальные модели: при слиянии text-to-image моделей для японского итоговая версия стала лучше понимать японские запросы и при этом сохранила сильный английский — без «забывания» старых навыков.
Этот подход показывает, что будущее ИИ может быть не за одним огромным монолитом, а за живой экосистемой специализированных моделей, которые эволюционируют вместе, обмениваются сильными сторонами и становятся более гибкими и креативными.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2❤49👍27🔥11🤔3❤🔥1😁1