AI-инфраструктура Авито: практические решения для LLM и VLM
На Data Fest 2025 команда Авито показала, как устроена их внутренняя ML разработка. В основе большинства продуктовых ИИ-решений — собственная языковая модель A-Vibe (до 7 млрд параметров, обучена на 700 млрд токенов). Для нее специально сделали токенизатор под русский язык — он обрабатывает тексты на 29% эффективнее стандартных. Это позволило в два раза ускорить работу модели. A-Vibe уже работает в продакшене и заняла первое место среди моделей до 7 миллиардов параметров в бенчмарке МЕРА.
Для техподдержки сделали инструмент на базе LLM: он переписывает ответы агентов, чтобы они звучали более эмпатично и по-человечески, и саммаризует обращения при передаче между сотрудниками. Агенты довольны: 97% отметили, что стало удобнее.
Под все это в Авито построили свою ML-платформу. В ней есть хранилище признаков для моделей, система разметки с проверкой качества и решение Aqueduct — оно встраивается прямо в модель и экономит до 30% ресурсов на инференсе. Платформа уже позволяет запускать продакшен-модели без программирования, через no-code интерфейс.
Стажеры тоже работают с реальными задачами — например, обучают модели с нуля и оптимизируют пайплайны. Один такой проект помог в 10 раз сократить расходы на проверку звонков.
Отдельный блок на фестивале занял ML Cup от Авито. Участники решали задачи по рекомендациям и поиску дублей — те же, что крутятся в продакшене и обрабатывают 4 миллиарда событий в день. За два месяца подали 6500 решений, в конкурсе участвовало почти 900 человек.
На Data Fest 2025 команда Авито показала, как устроена их внутренняя ML разработка. В основе большинства продуктовых ИИ-решений — собственная языковая модель A-Vibe (до 7 млрд параметров, обучена на 700 млрд токенов). Для нее специально сделали токенизатор под русский язык — он обрабатывает тексты на 29% эффективнее стандартных. Это позволило в два раза ускорить работу модели. A-Vibe уже работает в продакшене и заняла первое место среди моделей до 7 миллиардов параметров в бенчмарке МЕРА.
Для техподдержки сделали инструмент на базе LLM: он переписывает ответы агентов, чтобы они звучали более эмпатично и по-человечески, и саммаризует обращения при передаче между сотрудниками. Агенты довольны: 97% отметили, что стало удобнее.
Под все это в Авито построили свою ML-платформу. В ней есть хранилище признаков для моделей, система разметки с проверкой качества и решение Aqueduct — оно встраивается прямо в модель и экономит до 30% ресурсов на инференсе. Платформа уже позволяет запускать продакшен-модели без программирования, через no-code интерфейс.
Стажеры тоже работают с реальными задачами — например, обучают модели с нуля и оптимизируют пайплайны. Один такой проект помог в 10 раз сократить расходы на проверку звонков.
Отдельный блок на фестивале занял ML Cup от Авито. Участники решали задачи по рекомендациям и поиску дублей — те же, что крутятся в продакшене и обрабатывают 4 миллиарда событий в день. За два месяца подали 6500 решений, в конкурсе участвовало почти 900 человек.
Media is too big
VIEW IN TELEGRAM
🔥 Manus Chat Mode — чат с ИИ бесплатно и без ограничений для всех!
💬 Работает супер быстро.
🚀 Так же доступен Agent Mode с расширенными возможностями.
От простых вопросов до сложных задач — всё в одном окне : https://manus.im/
@ai_machinelearning_big_data
#news #ai #ml #manus
💬 Работает супер быстро.
🚀 Так же доступен Agent Mode с расширенными возможностями.
От простых вопросов до сложных задач — всё в одном окне : https://manus.im/
@ai_machinelearning_big_data
#news #ai #ml #manus
Media is too big
VIEW IN TELEGRAM
Новые графические процессоры серии Rubin R100 и процессоры Vera, вероятно, дебютируют в сентябре. Это стало возможным благодаря ускорению графика разработки — теперь обновления выходят каждые 6 месяцев вместо традиционных 12.
Rubin R100 будет использовать память HBM4, литографию TSMC 3 нм и упаковку CoWoS-L, а также впервые внедрит чиплет-дизайн с 4-кратным увеличением площади кристалла. . Вместе с этим линейка Vera сменит ARM-процессоры Grace и будет основан на новом поколении ядер ARM, обещая значительный прирост производительности. Смена графика разработки несет в себе риски: рынок может не успеть адаптироваться, а первые партии часто сталкиваются с проблемами, как это было с Blackwell.
ctee.com.tw
Google Cloud анонсировал превью новых виртуальных машин G4 на базе GPU NVIDIA RTX PRO 6000 Blackwell, став первым публичным облаком, внедрившим эту технологию. Каждый экземпляр объединяет 8 GPU, два процессора AMD Turin с 384 виртуальными ядрами и 1,5 ТБ памяти DDR5, а также сетевые ускорители Titanium с пропускной способностью до 400 Гб/с. Все это дает в 4 раза большую вычислительную мощность и увеличенную в 6 раз пропускную способность памяти по сравнению с предыдущим поколением.
G4 подходит для задач от ИИ-инференса до рендеринга и симуляций с физически точными расчетами. RT-ядра ускоряют трассировку лучей для реалистичной графики, а фреймворк NVIDIA Dynamo оптимизирует обработку генеративных моделей.
Экземпляры будут доступны в составе системы AI Hypercomputer и получат интеграцию с сервисами Google Cloud. Доступность новых VM - ближе к концу года.
cloud.google.com
OpenAI откладывает релиз открытой языковой модели до конца этого лета, сообщил генеральный директор Сэм Альтман в X. Первоначально модель планировалось выпустить до конца июня и она, по обещаниям, должна быть с ризонингом.
Альтман сказал, что исследовательская группа достигла неожиданного прогресса, который теперь требует больше времени, назвав результат "стоящим ожидания".
Sam Altman в сети X
Компании подали совместный иск против разработчика ИИ-генератора Midjourney, обвиняя его в нелегальном создании изображений персонажей Дарта Вейдера и Миньонов. Судебный иск был зарегистрирован в федеральном суде Калифорнии, где стороны заявили, что Midjourney продолжал использовать защищенные авторским правом материалы даже после предыдущих требований остановить это.
Студии требуют компенсации убытков, запрета на дальнейшее использование образов и проведения судебного разбирательства с присяжными. Midjourney пока не ответила на запрос публично.
wsj.com
ChatGPT 4o потерпел неожиданное поражение от шахматной игры 1979 года для консоли Atari 2600 — даже на уровне «начинающий». Инженер Robert Caruso протестировал систему через эмулятор, удивившись, как ChatGPT повторял грубые ошибки: забывал где находятся фигуры и путал их, обвинял слишком абстрактные иконки Atari и пропускал элементарные угрозы.
Программа Atari, работавшая на процессоре 1.19 МГц и анализировавшая лишь 1-2 хода вперед, обыграла нейросеть без шансов на победу. Хотя Роберт менял оформление фигур, пытаясь облегчить задачу, ChatGPT продолжал «тупить», давал обещания выиграть в следующей партии, но в итоге сдался.
tomshardware.com
V-JEPA 2 — новая версия модели Joint Embedding Predictive Architecture, обученной на видео.
Она задаёт новый стандарт в визуальном понимании, предсказании и планировании действий в физическом мире.
Github
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🚀 Cosmos-Predict2 — новая открытая версия видео-модели для Physical AI от NVIDIA!
Cosmos-Predict2 — ключевая часть экосистемы World Foundation Models (WFMs), созданная для Physical AI. Модель умеет предсказывать будущее состояние визуального мира, используя текст и видео. Cosmos разработан для ускорения обучения моделей, которые понимают физику, среду и действия — от автономных автомобилей до роботов. Выглядит очень интересно.
Это самое мощное поколение моделей в экосистеме Cosmos. Модель заметно улучшена по сравнению с Predict1:
🎯 лучшее качество видео
🧠 точнее соответствует текстовому описанию
🎥 более реалистичная динамика движения
📊 Cosmos-Predict2 превосходит другие open-source видео foundation-модели.
▪ Веса
▪ Полный код для инференса и обучения (с туториалами)
@ai_machinelearning_big_data
#Cosmos #NVIDIA
Cosmos-Predict2 — ключевая часть экосистемы World Foundation Models (WFMs), созданная для Physical AI. Модель умеет предсказывать будущее состояние визуального мира, используя текст и видео. Cosmos разработан для ускорения обучения моделей, которые понимают физику, среду и действия — от автономных автомобилей до роботов. Выглядит очень интересно.
Это самое мощное поколение моделей в экосистеме Cosmos. Модель заметно улучшена по сравнению с Predict1:
🎯 лучшее качество видео
🧠 точнее соответствует текстовому описанию
🎥 более реалистичная динамика движения
📊 Cosmos-Predict2 превосходит другие open-source видео foundation-модели.
▪ Веса
▪ Полный код для инференса и обучения (с туториалами)
@ai_machinelearning_big_data
#Cosmos #NVIDIA
Media is too big
VIEW IN TELEGRAM
По аналогии с автосалонами, робототехнический 4S будет предлагать полный цикл: продажи (Sales), сервис (Service), запчасти (Spare parts) и консультации/анализ (Surveys). Планируется зона с демонстрацией роботов в реалистичных сценариях – можно будет всё пощупать руками и увидеть их возможности в деле. Плюс создадут быструю сеть поставки комплектующих по стране и соберут профильную команду для сборки, ремонта и обслуживания машин.
Первыми партнерами станут несколько лидеров сферы: UBTECH и Galaxea. Откроется центр в августе на базе промпарка в районе Ичжуан на юге столицы.
english.news.cn
The Browser Company открыл доступ к бета-версии браузера Dia (по инвайтам). Dia позиционируется как решение, где ИИ глубоко интегрирован в самую суть взаимодействия, он встроен прямо в рабочий процесс пользователя, избавляя от необходимости постоянно ходить на сайты ChatGPT или Claude.
Dia построен на Chromium, так что интерфейс многим знаком. Главная фича — умная адресная строка: она работает и как поиск, и как чат-бот с ИИ. Помощник умеет искать в сети, суммировать загруженные файлы, автоматически переключаться между режимами. Можно даже спросить его о содержимом всех открытых вкладок или попросить составить черновик на их основе.
Настройки производятся через диалог с ботом: можно задать тон, стиль письма, параметры для кода. Опция History (по желанию) позволяет браузеру использовать недельную историю просмотров как контекст для ответов. А функция Skills помогает создавать мини-скрипты — ярлыки для сложных настроек или действий.
techcrunch.com
Mistral AI анонсировала Mistral Compute - инфраструктурную платформу для разработки и запуска ИИ. Это полноценный приватный стек: от GPU и систем оркестрации до API и сервисов. На выбор любой формат, от bare-metal до полностью управляемой PaaS.
Mistral Compute нацелен дать государствам, компаниям и научным центрам, ищущих альтернативу решениям из США или Китая, возможность самим строить ИИ-среду под свои нужды и полностью ею владеть.
Платформа использует новейшие архитектуры NVIDIA, с доступом к десяткам тысяч GPU. Она создана командой с огромным опытом в HPC и обучении топовых ИИ-моделей. Ключевые акценты: устойчивость и суверенитет данных, инфраструктура соответствует строгим европейским нормам и работает на декарбонизированной энергии.
mistral.ai
Seedance 1.0 - новая генеративная модель для создания видео, которая, по утверждениям ByteDance, превосходит конкурентов в точности выполнения запросов, качестве движений и резкости изображения. В тестах на Artificial Analysis она лидирует в задачах text-to-video и image-to-video, обходя Google Veo 3, Kuaishou Kling 2.0 и OpenAI Sora. Модель справляется с длинными сценами, сохраняя стабильность персонажей и переходов между ракурсами, но пока не поддерживает добавление звука.
Seedance 1.0 генерирует 5-секундный Full HD-ролик за 41 секунду — это быстрее аналогов, хотя новый Google Veo 3 Fast может нивелировать это преимущество. Инструмент планируют внедрить в платформы Doubao и Jimeng. Целевая аудитория — от профессиональных видеомейкеров до обычных пользователей.
seed.bytedance.com
Midjourney объявила о начале открытого тестирования модели генерации видео по текстовым запросам. Задача тестирования собрать обратную связь для улучшения алгоритма.
Создатели пригласили сообщество принять участие в онлайн-рейтинге сгенерированных роликов, присоединиться можно по ссылке. Пока некоторые образцы выглядят достойно и сохраняют фирменный стиль Midjourney, но в целом результаты пока нестабильны.
Компания подчеркивает: это не финальная версия модели, а лишь первый шаг. Дополнительные сессии тестирования уже запланированы, но дату релиза и цену пока не раскрывают.
midjourney.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🚨 NVIDIA показала будущее ИИ на GTC Paris
Вот 7 самых интересных анонсов 👇
1️⃣ NVL72 — система из 72 Blackwell GPU
NVIDIA Blackwell: пропускная способность — 130 ТБ/с. Заточен для масштабных AI-систем.
• Лидерство в скорости инференса
• Поддержка популярных моделей: DeepSeek-R1, Llama 3.1 405B, Llama 3.3 70B и другие
• Второе поколение Transformer Engine с поддержкой FP4
• TensorRT Model Optimizer для квантования моделей в FP4
2️⃣ Фабрики ИИ
Дженсен назвал их *"фабриками интеллекта"*. Огромные центры на Blackwell, NVLink и жидкостном охлаждении, работающие без остановки. «Мы строим сеть AI-фабрик в Европе, чтобы локальные идеи становились глобальными инновациями»*, — Дженсен Хуанг
3️⃣ Цифровые двойники
Всё, что создаётся в физическом мире, будет сперва оцифровано в виртуальный мир
4️⃣ Agentic AI — следующий важный этап
ИИ, которые наблюдают, размышляют, действуют и учатся. Постоянно обучающиеся агенты, способные переосмысливать свои решения.
5️⃣ CUDA-Q на Grace Blackwell
CUDA-Q — это open-source платформа для разработки гибридных квантовых приложений, объединяющая GPU, CPU и QPU в единую систему.
Она “qubit-agnostic” — поддерживает любые типы кубитов и QPU-архитектуры.
🔹 Гибридный код: квантовые и классические вычисления в одном потоке
🔹 До 2500× ускорение симуляций на GPU
🔹 Лучшие компиляторы и рантайм-инструменты
🔹 Интеграция с AI и HPC-воркфлоу
🔹 Поддержка всех типов QPU и кубитных технологий
🔹 Работает с реальными и симулируемыми квантовыми процессорами
6️⃣ Суверенный AI в Европе
Франция, Германия, UK, Финляндия, Италия и Испания создают свои AI-инфраструктуры в партнёрстве с NVIDIA.
7️⃣ DGX Cloud Lepton от NVIDIA + Hugging Face
Глобальный доступ к GPU в один клик. Hugging Face запускает Training Cluster as a Service — теперь обучение LLM напрямую интегрировано с Lepton.
@ai_machinelearning_big_data
#NVIDIA #GTC
Вот 7 самых интересных анонсов 👇
1️⃣ NVL72 — система из 72 Blackwell GPU
NVIDIA Blackwell: пропускная способность — 130 ТБ/с. Заточен для масштабных AI-систем.
• Лидерство в скорости инференса
• Поддержка популярных моделей: DeepSeek-R1, Llama 3.1 405B, Llama 3.3 70B и другие
• Второе поколение Transformer Engine с поддержкой FP4
• TensorRT Model Optimizer для квантования моделей в FP4
2️⃣ Фабрики ИИ
Дженсен назвал их *"фабриками интеллекта"*. Огромные центры на Blackwell, NVLink и жидкостном охлаждении, работающие без остановки. «Мы строим сеть AI-фабрик в Европе, чтобы локальные идеи становились глобальными инновациями»*, — Дженсен Хуанг
3️⃣ Цифровые двойники
Всё, что создаётся в физическом мире, будет сперва оцифровано в виртуальный мир
4️⃣ Agentic AI — следующий важный этап
ИИ, которые наблюдают, размышляют, действуют и учатся. Постоянно обучающиеся агенты, способные переосмысливать свои решения.
5️⃣ CUDA-Q на Grace Blackwell
CUDA-Q — это open-source платформа для разработки гибридных квантовых приложений, объединяющая GPU, CPU и QPU в единую систему.
Она “qubit-agnostic” — поддерживает любые типы кубитов и QPU-архитектуры.
🔹 Гибридный код: квантовые и классические вычисления в одном потоке
🔹 До 2500× ускорение симуляций на GPU
🔹 Лучшие компиляторы и рантайм-инструменты
🔹 Интеграция с AI и HPC-воркфлоу
🔹 Поддержка всех типов QPU и кубитных технологий
🔹 Работает с реальными и симулируемыми квантовыми процессорами
6️⃣ Суверенный AI в Европе
Франция, Германия, UK, Финляндия, Италия и Испания создают свои AI-инфраструктуры в партнёрстве с NVIDIA.
7️⃣ DGX Cloud Lepton от NVIDIA + Hugging Face
Глобальный доступ к GPU в один клик. Hugging Face запускает Training Cluster as a Service — теперь обучение LLM напрямую интегрировано с Lepton.
@ai_machinelearning_big_data
#NVIDIA #GTC
Первая полностью open-source, готовая к продакшену PBR 3D генеративная модель!
PBR (Physically Based Rendering) - это технология, при которой внешний вид 3D-объектов рассчитывается с учётом реальных физических законов взаимодействия света и поверхности.
✅ Модель выдает кинематографичное качество: синтез PBR-материалов — кожа, бронза и другие поверхности выглядят фотореалистично с красивыми эффектами освещения.
✅ Open source: доступны веса модели, код для обучения и инференса, пайплайны — всё можно доработать под себя.
✅ Запускается даже на потребительских GPU (Модель тестировалась на GPU A100 с Python 3.10 и PyTorch 2.5.1+cu124.) — с моделью создавать 3D-контент могут не только студии, но и любые разработчики и малые команды.
▪ Модель: https://huggingface.co/tencent/Hunyuan3D-2.1
▪ Github: https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1
▪ Hunyuan 3D Creation Engine: https://3d.hunyuan.tencent.com
@ai_machinelearning_big_data
#Hunyuan3D #OpenSource #3DCreation #tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM