281K subscribers
3.95K photos
676 videos
17 files
4.54K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
NeAT: Learning Neural Implicit Surfaces with Arbitrary Topologies from Multi-view Images

Novel neural volume rendering method, which uses SDF and validity to calculate the volume opacity and avoids rendering points with low validity.

Новая нейронная система рендеринга, которая может опрелелять различные поверхности на фото с произвольной топологией на основе многоракурсных изображений.


🖥 Github: https://github.com/xmeng525/NeAT

Paper: https://arxiv.org/abs/2303.12012v1

Dataset: https://www.dropbox.com/sh/utn5rnohmr0y2c8/AACdets4PQrP5CB1KwGkpOFUa?dl=0

💨 Project: https://xmeng525.github.io/xiaoxumeng.github.io/projects/cvpr23_neat

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍134🔥1
ReVersion : Diffusion-Based Relation Inversion from Images

ReVersion for the Relation Inversion task, which aims to learn a specific relation (represented as "relation prompt") from exemplar images.

Фреймворк для поиска общих сущностей в изображениях для генерации промптов для синтеза новых изображений.


🖥 Github: https://github.com/ziqihuangg/reversion

Paper: https://arxiv.org/abs/2303.13495v1

💨 Project: https://ziqihuangg.github.io/projects/reversion.html

Video: https://www.youtube.com/watch?v=pkal3yjyyKQ

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍204🔥4🤝1
Train your ControlNet with diffusers 🧨

ControlNet is a neural network structure that allows fine-grained control of diffusion models by adding extra conditions.

В этой статье подробно рассматривается каждый шаг, обучения модельи Uncanny Faces - модель поз лиц, основанную на синтетических 3D лицах.

🤗 Hugging face: https://huggingface.co/blog/train-your-controlnet#

🖥 Github: https://github.com/huggingface/blog/blob/main/train-your-controlnet.md

ControlNet training example: https://github.com/huggingface/diffusers/tree/main/examples/controlnet

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍153🔥3
🔥 Fix the Noise: Disentangling Source Feature for Controllable Domain Translation

A new approach for high-quality domain translation with better controllability.

Новый подход, который позволяет плавно контролировать степень сохранения исходных характеристик при генерации изображений.

🖥 Github: https://github.com/LeeDongYeun/FixNoise

Paper: https://arxiv.org/abs/2303.11545v1

💨 Dataset: https://paperswithcode.com/dataset/metfaces

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍6🔥3👎1🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
Conditional Image-to-Video Generation with Latent Flow Diffusion Models

New approach for cI2V using novel latent flow diffusion models (LFDM) that synthesize an optical flow sequence in the latent space based on the given condition to warp the given image.

Генерация видео из изображений с использованием моделей диффузии.


🖥 Github: https://github.com/nihaomiao/cvpr23_lfdm

Paper: https://arxiv.org/abs/2303.13744v1

💨 Dataset: https://drive.google.com/file/d/1dRn1wl5TUaZJiiDpIQADt1JJ0_q36MVG/view?usp=share_link

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍109🔥7
Federated Learning using Hugging Face and Flower

В этом уроке рассматривается, как использовать Hugging Face для Federated Learning (так называется совокупность методов обучения ML моделей на распределённых данных) языковых моделей на нескольких клиентах с помощью фреймворка Flower

This tutorial will show how to leverage Hugging Face to federate the training of language models over multiple clients.

pip install datasets evaluate flwr torch transformers

🤗 Hugging face: https://huggingface.co/blog/fl-with-flower

🌷 Flower: https://flower.dev/

🖥 Colab: https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/fl-with-flower.ipynb

🖥 Github: https://github.com/adap/flower/tree/main/examples/quickstart_huggingface

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍4🔥3
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥61
AutoAD: Movie Description in Context

MAD: A Scalable Dataset for Language Grounding in Videos from Movie Audio Descriptions.

MAD - это масштабный набор данных, собранный из аудиоописаний фильмов
.

🖥 Github: https://github.com/Soldelli/MAD

Paper: https://arxiv.org/abs/2303.16899v1

💨 Dataset: https://paperswithcode.com/dataset/lsmdc

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍123🔥3😁1
DPF: Learning Dense Prediction Fields with Weak Supervision

🖥 Github: https://github.com/cxx226/dpf

Paper: https://arxiv.org/abs/2303.16890v1

💨 Dataset: https://paperswithcode.com/dataset/pascal-context

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍141🔥1😁1
This media is not supported in your browser
VIEW IN TELEGRAM
3D Line Mapping Revisited

LIMAP is a toolbox for mapping and localization with line features.

Интерфейсы для различных геометрических операций над 2D/3D линиями.

🖥 Github: https://github.com/cvg/limap

Paper: https://arxiv.org/abs/2303.17504v1

💨 Dataset: https://paperswithcode.com/dataset/hypersim

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍113🔥2🤯1
WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research

Propose a three-stage processing pipeline for filtering noisy data and generating high-quality captions, where ChatGPT.

Конвейер обработки для фильтрации зашумленных данных и создания высококачественных титров
.

🖥 Github: https://github.com/xinhaomei/wavcaps

Paper: https://arxiv.org/abs/2303.17395v1

💨 Dataset: https://paperswithcode.com/dataset/sounddescs

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍4🔥2
vid2vid-zero for Zero-Shot Video Editing

We propose vid2vid-zero, a simple yet effective method for zero-shot video editing.

Мы предлагаем vid2vid-zero, простой, но эффективный метод редактирования видео.

🖥 Github: https://github.com/baaivision/vid2vid-zero

Paper: https://arxiv.org/abs/2303.17599v1

💨 Dataset: https://paperswithcode.com/dataset/sounddescs

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍75🤔3🔥2
⚡️Token Merging for Stable Diffusion

Token Merging (ToMe) speeds up transformers by merging redundant tokens, which means the transformer has to do less work.

Используя только чистый python и pytorch, Token Merging для SD ускоряет генерацию изображений в 2 раза, за счет объединения лишних токенов.

pip install tomesd

🖥 Github: https://github.com/dbolya/tomesd

Paper: https://arxiv.org/abs/2303.17604v1

💨 Blog: https://research.facebook.com/blog/2023/2/token-merging-your-vit-but-faster/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥63👌1
⭐️ HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace

Language serves as an interface for LLMs to connect numerous AI models for solving complicated AI tasks!

Система, использующая LLM (например, ChatGPT) для подключения различных моделей ИИ в сообществах машинного обучения (например, HuggingFace) для решения задач ИИ.

🖥 Github: https://github.com/microsoft/JARVIS

Paper: https://arxiv.org/abs/2303.17604v1

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍206🔥1🥰1
WeakTr: Exploring Plain Vision Transformer for Weakly-supervised Semantic Segmentation

🖥 Github: https://github.com/hustvl/weaktr

Paper: https://arxiv.org/abs/2304.01184v1

💨 Dataset: https://paperswithcode.com/dataset/imagenet

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
Segment Anything

The Segment Anything Model (SAM) produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image.

Новая модель - Segment Anything, нейросеть, которая в один клик может вырезать любой объект из фото или видео.

🖥 Github: https://github.com/facebookresearch/segment-anything

⭐️ Project: https://segment-anything.com/

Paper: https://arxiv.org/abs/2304.02643v1

💨 Dataset: https://segment-anything.com/dataset/index.html

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥28👍105🥰1