Microsoft Python Development Professional Certificate
👇👇
https://www.clcoding.com/2025/05/microsoft-python-development.html
#پایتون #Python
🆔 @Python4all_pro
👇👇
https://www.clcoding.com/2025/05/microsoft-python-development.html
#پایتون #Python
🆔 @Python4all_pro
Computer Vision + sentiment Analysis + Recommender system and many more
https://youtube.com/playlist?list=PLlff-0SljnifT40_TAlibwmyzh1xVhKTR&si=P3wIYBXK9TbGlA5O
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
1. Use incomprehensible names of variables
Call variables X, Y, A, Thing. Abstraction is the key to confusion
def f(x, y, z=None):
a = x * 2
b = y + a if z else y - a
c = [i for i in range(a) if i % 2]
return sum(c) + b
2. Sake maximum logic in one line
Complex thornar expressions and nested List CompreHance - all in one line.
result = [x if x > 0 else (y if y < 0 else z) for x in data if x or y and not z]
3. Use Eval () and Exec ()
It is slow, unsafe and stupid - but spectacular.
eval("d['" + key + "']")
4. Reprint variables with different types
Let one variable be a line, and a number, and a list - a dynamic typification
value = "42"
value = int(value)
value = [value] * value
5. Use global variables
Change the condition of the application from anywhere. Especially from the inside of the functions.
counter = 0
def increment():
global counter
counter += 1
6. Use magic numbers and lines
Without explanation. Let colleagues guess why exactly 42 or "XYZ"
if user.role == "xyz" and user.level > 42:
access_granted()
7. Ignore style and indentation
No PEP8, no rules. Write as you want
def foo():print("start")
if True:
print("yes")
else:
print("no")
8. Copy the code from Stack Overflow without delving
Ctrl+C is also a development
def complex_logic(x):
return (lambda y: (lambda z: z**2)(y + 1))(x)
9. Invent abstraction unnecessary
Instead of a simple function - classes, factories and strategies
class HandlerFactory:
def get_handler(self):
class Handler:
def handle(self, x): return x
return Handler()
10. Add dead code
Never remove - suddenly comes in handy. And let it be loaded into every launch
def legacy_feature():
print("This feature is deprecated")
return
# нигде не вызывается
11. Do not write the documentation
Comments only interfere. Whoever wants to figure it out
def a(x): return x+1
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1🫡1
Gremllm is an unusual Python class in which all methods and properties are created dynamically using LLM. You describe, *what kind of object do you want *, and then Gremllm decides what should happen when the methods are called or the fields are addressed.
pip install gremllm
🔧 Example:
from gremllm import Gremllm
counter = Gremllm('counter')
counter.value = 5
counter.increment()
print(counter.value) # → 6?
print(counter.to_roman_numerals()) # → VI?
- dynamic behavior: everything is determined "on the fly" using LLM
- Support Openai, Claude, Gemini, and local models
- Wet Mode: You can build challenges of calls (methods return objects)
- Verbose Mode: Bodes which code was generated
- smart processing of errors and setting through inheritance
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
سباستین راشکا، محقق برجسته هوش مصنوعی با بیش از یک دهه تجربه در این لینک مفاهیم اصلی PyTorch را در فقط یک ساعت آموزش می دهد
این محتوا بر اساس کتاب او با عنوان
Build a Large Language Model (From Scratch)
است که به دلیل رویکرد عملی و کدمحور در توسعه مدلهای زبانی بزرگ مورد تحسین قرار گرفته
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/pandas
https://www.kaggle.com/learn/data-visualization
https://www.kaggle.com/learn/intro-to-sql
https://www.kaggle.com/learn/advanced-sql
https://www.kaggle.com/learn/intro-to-machine-learning
https://www.kaggle.com/learn/intermediate-machine-learning
#پایتون #Python #علم_داده #یادگیری_ماشین
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Media is too big
VIEW IN TELEGRAM
#پایتون #Python #یادگیری_ماشین
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
صدها الگوریتم محبوب پیاده سازی شده در پایتون از ابتدا.
https://github.com/TheAlgorithms/Python/tree/master
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
https://github.com/shahadot786/Python-Books/blob/master/aipython.pdf
#پایتون #Python #pdf #هوش_مصنوعی
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
الگوهای طراحی یک ابزار قدرتمند برای بهبود کیفیت و کارایی نرمافزارهای پایتون هستند. با یادگیری و استفاده از این الگوها، میتوانید کدهایی بنویسید که ساختار بهتری دارند، خوانایی بیشتری دارند و توسعه و نگهداری آنها سادهتر است
#پایتون #Python #pattern
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
10 GitHub Repositories for Python Projects
🔹 The Ultimate Project-Based Python Learning Hub
‣ Top GitHub repo with 230k+ stars of hands-on tutorials.
📎 Link
🔹 Endless Python Project Ideas & Resources
‣ Tons of creative ideas to sharpen your coding skills.
📎 Link
🔹 Real Python’s Hands-On Learning Materials
‣ Bonus content and exercises from Real Python tutorials.
📎 Link
🔹 Curated Project Tutorials for Every Learner
‣ Project-based learning with AI/ML tutorials included.
📎 Link
🔹 Awesome Jupyter: Notebooks, Libraries & More
‣ Boost your Jupyter Notebook skills and workflow.
📎 Link
🔹 Python Mini-Projects for Quick Wins
‣ Fun mini-games and small apps for fast practice.
📎 Link
🔹 100 Practical Python Projects Challenge
‣ Track your progress across 100 real Python projects.
📎 Link
🔹 Data Science Projects for Python Enthusiasts
‣ Beginner-friendly data science project ideas.
📎 Link
🔹 Showcase of Awesome Python Projects
‣ Collection of cool Python projects with guides.
📎 Link
🔹 Python Script Projects from Beginner to Advanced
‣ Step-by-step script projects for all levels.
📎 Link
#پایتون #پروژه #Python
📱 @Python4all_pro
🔹 The Ultimate Project-Based Python Learning Hub
‣ Top GitHub repo with 230k+ stars of hands-on tutorials.
📎 Link
🔹 Endless Python Project Ideas & Resources
‣ Tons of creative ideas to sharpen your coding skills.
📎 Link
🔹 Real Python’s Hands-On Learning Materials
‣ Bonus content and exercises from Real Python tutorials.
📎 Link
🔹 Curated Project Tutorials for Every Learner
‣ Project-based learning with AI/ML tutorials included.
📎 Link
🔹 Awesome Jupyter: Notebooks, Libraries & More
‣ Boost your Jupyter Notebook skills and workflow.
📎 Link
🔹 Python Mini-Projects for Quick Wins
‣ Fun mini-games and small apps for fast practice.
📎 Link
🔹 100 Practical Python Projects Challenge
‣ Track your progress across 100 real Python projects.
📎 Link
🔹 Data Science Projects for Python Enthusiasts
‣ Beginner-friendly data science project ideas.
📎 Link
🔹 Showcase of Awesome Python Projects
‣ Collection of cool Python projects with guides.
📎 Link
🔹 Python Script Projects from Beginner to Advanced
‣ Step-by-step script projects for all levels.
📎 Link
#پایتون #پروژه #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
The tool supports distributed calculations through DASK and GPU-acceleration through Numba. The technology is especially useful for detecting anomalies, repeating fragments and semantic segmentation. The library works equally well both on small data sets and on time rows with millions of points.
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
ChatGPT cheat sheet for Data Science.pdf
29 MB
📘 کتاب " ChatGPT برای تحلیل داده "
⬅️ این کتاب برای استفاده مؤثر از ChatGPT در حوزه علوم داده است که شامل prompt های آماده ، نمونهکدهای کاربردی و بهترین شیوهها جهت تسریع و بهینهسازی وظایفی مانند تولید داده، تحلیل، مدلسازی و خودکارسازی است.
✔️ ویژگیهای کلیدی کتاب فوق عبارتند از:
⏺️ تولید کد: اسکریپتهایی برای ایجاد مجموعهدادههای نمونه با استفاده از کتابخانههای Python مانند Pandas و NumPy؛ از جمله ساخت جدولهایی شامل کلیدهای اصلی (primary keys)، نام، سن و حقوق.
⏺️ تحلیل داده: روشهایی برای تحلیل اکتشافی داده (EDA)، آزمونهای فرضیه و مدلسازی پیشبینانه؛ به همراه پیشنهادهایی برای تجسم دادهها مانند نمودارهای میلهای و خطی، و استفاده از روشهای آماری معتبر.
⏺️ یادگیری ماشین: راهنمای انتخاب الگوریتم مناسب، تنظیم ابرپارامترها (Hyperparameter Tuning) و تفسیر مدلها؛ با مثالهایی عملی به زبانهای Python و SQL.
⏺️ کاربردهای پردازش زبان طبیعی (NLP): ابزارهایی برای طبقهبندی متون، تحلیل احساسات (Sentiment Analysis) و شناسایی موجودیتهای نامدار (NER)، با تکیه بر قابلیتهای زبانی ChatGPT.
⏺️ خودکارسازی جریان کار: راهکارهایی برای خودکارسازی وظایف تکراری مانند پاکسازی داده (رفع مقادیر تکراری یا گمشده) و تولید خودکار گزارشها.
#پایتون #پروژه #Python #علم_داده #ChatGPT
📱 @Python4all_pro
#پایتون #پروژه #Python #علم_داده #ChatGPT
Please open Telegram to view this post
VIEW IN TELEGRAM
https://www.kdnuggets.com/how-to-optimize-your-python-code-even-if-youre-a-beginner
آموزش های مربوط به پاکسازی داده ها رو با #Data_Cleaning در کانال پیدا می تونید پیدا کنید
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
KDnuggets
How to Optimize Your Python Code Even If You're a Beginner
Think you're too new to optimize Python? Think again. These quick tips make optimization easy and effective from the start.
Please open Telegram to view this post
VIEW IN TELEGRAM
https://github.com/lukasmasuch/best-of-python
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - lukasmasuch/best-of-python: 🏆 A ranked list of awesome Python open-source libraries and tools. Updated weekly.
🏆 A ranked list of awesome Python open-source libraries and tools. Updated weekly. - lukasmasuch/best-of-python