پایتون ( Machine Learning | Data Science )
23.8K subscribers
513 photos
65 videos
106 files
372 links
◀️اینجا با تمرین و چالش با هم پایتون رو یاد می گیریم

بانک اطلاعاتی پایتون
پروژه / code/ cheat sheet
+ویدیوهای آموزشی

+کتابهای پایتون
تبلیغات:
@alloadv

🔁ادمین :
@maryam3771
Download Telegram
#NumPy cheat sheet for #datascience :

*Array Creation*

1. numpy.array() - Create an array from a list or other iterable.
2. numpy.zeros() - Create an array filled with zeros.
3. numpy.ones() - Create an array filled with ones.
4. numpy.empty() - Create an empty array.
5. numpy.arange() - Create an array with evenly spaced values.
6. numpy.linspace() - Create an array with evenly spaced values.

*Array Operations*

1. + - Element-wise addition.
2. - - Element-wise subtraction.
3. * - Element-wise multiplication.
4. / - Element-wise division.
5. ** - Element-wise exponentiation.
6. numpy.sum() - Sum of all elements.
7. numpy.mean() - Mean of all elements.
8. numpy.median() - Median of all elements.
9. numpy.std() - Standard deviation.
10. numpy.var() - Variance.

*Array Indexing*

ادامه در پست بعد👇

#cheat_sheet #Python
🆔 @Python4all_pro
#NumPy cheat sheet for #datascience :

*Array Creation*

1. numpy.array() - Create an array from a list or other iterable.
2. numpy.zeros() - Create an array filled with zeros.
3. numpy.ones() - Create an array filled with ones.
4. numpy.empty() - Create an empty array.
5. numpy.arange() - Create an array with evenly spaced values.
6. numpy.linspace() - Create an array with evenly spaced values.

*Array Operations*

1. + - Element-wise addition.
2. - - Element-wise subtraction.
3. * - Element-wise multiplication.
4. / - Element-wise division.
5. ** - Element-wise exponentiation.
6. numpy.sum() - Sum of all elements.
7. numpy.mean() - Mean of all elements.
8. numpy.median() - Median of all elements.
9. numpy.std() - Standard deviation.
10. numpy.var() - Variance.

*Array Indexing*

1. arr[i] - Access ith element.
2. arr[i:j] - Access slice from ith to jth element.
3. arr[i:j:k] - Access slice with step k.

*Array Reshaping*

1. arr.reshape() - Reshape array.
2. arr.flatten() - Flatten array.
3. arr.ravel() - Flatten array.

*Array Manipulation*

1. numpy.concatenate() - Concatenate arrays.
2. numpy.split() - Split array.
3. numpy.transpose() - Transpose array.
4. numpy.flip() - Flip array.

*Mathematical Functions*

1. numpy.sin() - Sine.
2. numpy.cos() - Cosine.
3. numpy.tan() - Tangent.
4. numpy.exp() - Exponential.
5. numpy.log() - Natural logarithm.

*Statistical Functions*

1. numpy.min() - Minimum value.
2. numpy.max() - Maximum value.
3. numpy.percentile() - Percentile.
4. numpy.quantile() - Quantile.

*Random Number Generation*

1. numpy.random.rand() - Random numbers.
2. numpy.random.normal() - Normal distribution.
3. numpy.random.uniform() - Uniform distribution.

*Linear Algebra*

1. numpy.dot() - Dot product.
2. numpy.matmul() - Matrix multiplication.
3. numpy.linalg.inv() - Matrix inverse.

#cheat_sheet #Python
🆔 @Python4all_pro
👍5
Python Cheat-Sheet - A Quick Reference Guide for Programmers



#cheat_sheet #Python


🆔 @Python4all_pro
👍3
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥1
New to Pandas?

Here's a cheat sheet you can use



#پایتون #cheat_sheet #pandas

📱 @Python4all_pro
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤‍🔥1
image_2025-08-17_09-32-25.png
983.2 KB
👈چت شیت برای مصاحبه پایتون

1. Swap variables without a temporary one

a, b = 5, 10
a, b = b, a


2. One-line if-else (ternary)

result = "Even" if x % 2 == 0 else "Odd"


3. List Comprehension

squares = [x**2 for x in range(10)]
evens = [x for x in range(10) if x % 2 == 0]


4. Set and Dict Comprehension

unique = {x for x in [1,2,2,3]}        # remove duplicates
squares = {x: x**2 for x in range(5)}  # dict comprehension


5. Most common element in a list

from collections import Counter
most_common = Counter(['a','b','a','c']).most_common(1)[0][0]


6. Merging dictionaries (Python 3.9+)

a = {'x': 1}
b = {'y': 2}
merged = a | b


7. Returning multiple values

def stats(x):
    return max(x), min(x), sum(x)

high, low, total = stats([1, 2, 3])


8. Using zip to iterate over two lists

names = ['a', 'b']
scores = [90, 85]

for n, s in zip(names, scores):
    print(f"{n}: {s}")


9. Flattening nested lists

nested = [[1,2], [3,4]]
flat = [item for sublist in nested for item in sublist]


10. Default values in a dictionary

from collections import defaultdict
d = defaultdict(int)
d['apple'] += 1   # no KeyError


11. Lambda in one line

square = lambda x: x**2
print(square(4))


12. enumerate with index

for i, v in enumerate(['a', 'b', 'c']):
    print(i, v)


13. Sorting by key or value

d = {'a': 3, 'b': 1, 'c': 2}
sorted_by_val = sorted(d.items(), key=lambda x: x[1])


14. Reading file lines into a list

with open('file.txt') as f:
    lines = f.read().splitlines()


15. Type Hints

def add(x: int, y: int) -> int:
    return x + y


🔍برای دسترسی به چیت شیت‌های دیگه ی کانال با #cheat_sheet جستجو کنید

#پایتون #Python

📱 @Python4all_pro
Please open Telegram to view this post
VIEW IN TELEGRAM