#NumPy cheat sheet for #datascience :
*Array Creation*
1.
2.
3.
4.
5.
6.
*Array Operations*
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
*Array Indexing*
ادامه در پست بعد👇
#cheat_sheet #Python
🆔 @Python4all_pro
*Array Creation*
1.
numpy.array()
- Create an array from a list or other iterable.2.
numpy.zeros()
- Create an array filled with zeros.3.
numpy.ones()
- Create an array filled with ones.4.
numpy.empty()
- Create an empty array.5.
numpy.arange()
- Create an array with evenly spaced values.6.
numpy.linspace()
- Create an array with evenly spaced values.*Array Operations*
1.
+
- Element-wise addition.2.
-
- Element-wise subtraction.3.
*
- Element-wise multiplication.4.
/
- Element-wise division.5.
**
- Element-wise exponentiation.6.
numpy.sum()
- Sum of all elements.7.
numpy.mean()
- Mean of all elements.8.
numpy.median()
- Median of all elements.9.
numpy.std()
- Standard deviation.10.
numpy.var()
- Variance.*Array Indexing*
ادامه در پست بعد👇
#cheat_sheet #Python
🆔 @Python4all_pro
#NumPy cheat sheet for #datascience :
*Array Creation*
1.
2.
3.
4.
5.
6.
*Array Operations*
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
*Array Indexing*
1.
2.
3.
*Array Reshaping*
1.
2.
3.
*Array Manipulation*
1.
2.
3.
4.
*Mathematical Functions*
1.
2.
3.
4.
5.
*Statistical Functions*
1.
2.
3.
4.
*Random Number Generation*
1.
2.
3.
*Linear Algebra*
1.
2.
3.
#cheat_sheet #Python
🆔 @Python4all_pro
*Array Creation*
1.
numpy.array()
- Create an array from a list or other iterable.2.
numpy.zeros()
- Create an array filled with zeros.3.
numpy.ones()
- Create an array filled with ones.4.
numpy.empty()
- Create an empty array.5.
numpy.arange()
- Create an array with evenly spaced values.6.
numpy.linspace()
- Create an array with evenly spaced values.*Array Operations*
1.
+
- Element-wise addition.2.
-
- Element-wise subtraction.3.
*
- Element-wise multiplication.4.
/
- Element-wise division.5.
**
- Element-wise exponentiation.6.
numpy.sum()
- Sum of all elements.7.
numpy.mean()
- Mean of all elements.8.
numpy.median()
- Median of all elements.9.
numpy.std()
- Standard deviation.10.
numpy.var()
- Variance.*Array Indexing*
1.
arr[i]
- Access ith element.2.
arr[i:j]
- Access slice from ith to jth element.3.
arr[i:j:k]
- Access slice with step k.*Array Reshaping*
1.
arr.reshape()
- Reshape array.2.
arr.flatten()
- Flatten array.3.
arr.ravel()
- Flatten array.*Array Manipulation*
1.
numpy.concatenate()
- Concatenate arrays.2.
numpy.split()
- Split array.3.
numpy.transpose()
- Transpose array.4.
numpy.flip()
- Flip array.*Mathematical Functions*
1.
numpy.sin()
- Sine.2.
numpy.cos()
- Cosine.3.
numpy.tan()
- Tangent.4.
numpy.exp()
- Exponential.5.
numpy.log()
- Natural logarithm.*Statistical Functions*
1.
numpy.min()
- Minimum value.2.
numpy.max()
- Maximum value.3.
numpy.percentile()
- Percentile.4.
numpy.quantile()
- Quantile.*Random Number Generation*
1.
numpy.random.rand()
- Random numbers.2.
numpy.random.normal()
- Normal distribution.3.
numpy.random.uniform()
- Uniform distribution.*Linear Algebra*
1.
numpy.dot()
- Dot product.2.
numpy.matmul()
- Matrix multiplication.3.
numpy.linalg.inv()
- Matrix inverse.#cheat_sheet #Python
🆔 @Python4all_pro
👍5
👍4🔥1
Please open Telegram to view this post
VIEW IN TELEGRAM
image_2025-08-17_09-32-25.png
983.2 KB
1. Swap variables without a temporary one
a, b = 5, 10
a, b = b, a
2. One-line if-else (ternary)
result = "Even" if x % 2 == 0 else "Odd"
3. List Comprehension
squares = [x**2 for x in range(10)]
evens = [x for x in range(10) if x % 2 == 0]
4. Set and Dict Comprehension
unique = {x for x in [1,2,2,3]} # remove duplicates
squares = {x: x**2 for x in range(5)} # dict comprehension
5. Most common element in a list
from collections import Counter
most_common = Counter(['a','b','a','c']).most_common(1)[0][0]
6. Merging dictionaries (Python 3.9+)
a = {'x': 1}
b = {'y': 2}
merged = a | b
7. Returning multiple values
def stats(x):
return max(x), min(x), sum(x)
high, low, total = stats([1, 2, 3])
8. Using zip to iterate over two lists
names = ['a', 'b']
scores = [90, 85]
for n, s in zip(names, scores):
print(f"{n}: {s}")
9. Flattening nested lists
nested = [[1,2], [3,4]]
flat = [item for sublist in nested for item in sublist]
10. Default values in a dictionary
from collections import defaultdict
d = defaultdict(int)
d['apple'] += 1 # no KeyError
11. Lambda in one line
square = lambda x: x**2
print(square(4))
12. enumerate with index
for i, v in enumerate(['a', 'b', 'c']):
print(i, v)
13. Sorting by key or value
d = {'a': 3, 'b': 1, 'c': 2}
sorted_by_val = sorted(d.items(), key=lambda x: x[1])
14. Reading file lines into a list
with open('file.txt') as f:
lines = f.read().splitlines()
15. Type Hints
def add(x: int, y: int) -> int:
return x + y
#پایتون #Python
Please open Telegram to view this post
VIEW IN TELEGRAM