Master Python programming in 15 days with Free Resources 👇
Days 1-3: Introduction to Python
- Day 1: Start by installing Python on your computer.
- Day 2: Learn the basic syntax and data types in Python (variables, numbers, strings).
- Day 3: Explore Python's built-in functions and operators.
Days 4-6: Control Structures
- Day 4: Understand conditional statements (if, elif, else).
- Day 5: Learn about loops (for and while) and iterators.
- Day 6: Work on small projects to practice using conditionals and loops.
Days 7-9: Data Structures
- Day 7: Learn about lists and how to manipulate them.
- Day 8: Explore dictionaries and sets.
- Day 9: Understand tuples and lists comprehensions.
Days 10-12: Functions and Modules
- Day 10: Learn how to define functions in Python.
- Day 11: Understand scope and global vs. local variables.
- Day 12: Explore Python's module system and create your own modules.
Days 13-15: Intermediate Concepts
- Day 13: Work with file handling and I/O operations.
- Day 14: Learn about exceptions and error handling.
- Day 15: Explore more advanced topics like object-oriented programming and libraries such as NumPy, pandas, and Matplotlib.
FREE RESOURCES TO LEARN PYTHON 👇
Microsoft course for Python: https://learn.microsoft.com/en-us/training/paths/beginner-python/
Harvard course for Python: http://cs50.harvard.edu/python/2022/
Freecodecamp Python course with certificate: https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
#code #Python
🆔 @Python4all_pro
Days 1-3: Introduction to Python
- Day 1: Start by installing Python on your computer.
- Day 2: Learn the basic syntax and data types in Python (variables, numbers, strings).
- Day 3: Explore Python's built-in functions and operators.
Days 4-6: Control Structures
- Day 4: Understand conditional statements (if, elif, else).
- Day 5: Learn about loops (for and while) and iterators.
- Day 6: Work on small projects to practice using conditionals and loops.
Days 7-9: Data Structures
- Day 7: Learn about lists and how to manipulate them.
- Day 8: Explore dictionaries and sets.
- Day 9: Understand tuples and lists comprehensions.
Days 10-12: Functions and Modules
- Day 10: Learn how to define functions in Python.
- Day 11: Understand scope and global vs. local variables.
- Day 12: Explore Python's module system and create your own modules.
Days 13-15: Intermediate Concepts
- Day 13: Work with file handling and I/O operations.
- Day 14: Learn about exceptions and error handling.
- Day 15: Explore more advanced topics like object-oriented programming and libraries such as NumPy, pandas, and Matplotlib.
FREE RESOURCES TO LEARN PYTHON 👇
Microsoft course for Python: https://learn.microsoft.com/en-us/training/paths/beginner-python/
Harvard course for Python: http://cs50.harvard.edu/python/2022/
Freecodecamp Python course with certificate: https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
#code #Python
🆔 @Python4all_pro
Build a Business Analytics Dashboard Website using Python and MySQL
https://morioh.com/p/4dc41fee9160?f=5c21fb01c16e2556b555ab32
#python #mysql
🆔 @Python4all_pro
https://morioh.com/p/4dc41fee9160?f=5c21fb01c16e2556b555ab32
#python #mysql
🆔 @Python4all_pro
تبدیل متن به مقادیر عددی در پایتون
Numerizer
$ pip install numerizer
#code #Python
🆔 @Python4all_pro
Numerizer
$ pip install numerizer
>>> from numerizer import numerize
>>> numerize('forty two')
'42'
>>> numerize('forty-two')
'42'
>>> numerize('four hundred and sixty two')
'462'
>>> numerize('one fifty')
'150'
>>> numerize('twelve hundred')
'1200'
>>> numerize('twenty one thousand four hundred and seventy three')
'21473'
>>> numerize('one million two hundred and fifty thousand and seven')
'1250007'
>>> numerize('one billion and one')
'1000000001'
>>> numerize('nine and three quarters')
'9.75'
>>> numerize('platform nine and three quarters')
'platform 9.75'
#code #Python
🆔 @Python4all_pro
This media is not supported in your browser
VIEW IN TELEGRAM
🎵 UVR5 UI 🎵
The perfect Python tool to remove voice from audio using the user-friendly Gradio UI.
👉 This project is based on python-audio-separator (CLI version of UVR5).
▪Github
▪Colab
#code #Python
🆔 @Python4all_pro
The perfect Python tool to remove voice from audio using the user-friendly Gradio UI.
👉 This project is based on python-audio-separator (CLI version of UVR5).
▪Github
▪Colab
#code #Python
🆔 @Python4all_pro
21 پروژه پایتون از سطح مبتدی تا پیشرفته
https://morioh.com/p/bab182ed697a?f=5c21fb01c16e2556b555ab32
#پروژه #Python
🆔 @Python4all_pro
https://morioh.com/p/bab182ed697a?f=5c21fb01c16e2556b555ab32
#پروژه #Python
🆔 @Python4all_pro
Build an AI RAG agent with web access using GPT-4o in just 15 lines of Python Code (step-by-step instructions):
https://theunwindai.com/p/build-an-ai-rag-agent-with-web-access-using-gpt-4o
#code #Python
🆔 @Python4all_pro
https://theunwindai.com/p/build-an-ai-rag-agent-with-web-access-using-gpt-4o
#code #Python
🆔 @Python4all_pro
unwind ai
Build an AI RAG Agent with Web Access using GPT-4o
Fully -functional AI Agent in just 15 lines of Python Code (step-by-step instructions)
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Hallo2:Long-Duration and High-Resolution Audio-driven Portrait Image Animation
Python project for long duration, high resolution portrait animation.
▪ GitHub: https://github.com/fudan-generative-vision/hallo2
▪ Project: https://fudan-generative-vision.github.io/hallo2/#/
#Python
🆔 @Python4all_pro
Python project for long duration, high resolution portrait animation.
▪ GitHub: https://github.com/fudan-generative-vision/hallo2
▪ Project: https://fudan-generative-vision.github.io/hallo2/#/
#Python
🆔 @Python4all_pro
🖥 py2many: Python to many CLike languages transpiler
The py2many tool helps you translate Python code into code in various languages, including Rust.
It supports many languages such as Rust, C++, Julia, Kotlin, and others, and is also capable of generating Python code with type annotations.
To translate the code, use a command in the terminal, after which the generated code is compiled.
Documentation with instructions for installing the necessary libraries and formatters is available on the project website.
🔗 GitHub
#Python
🆔 @Python4all_pro
The py2many tool helps you translate Python code into code in various languages, including Rust.
It supports many languages such as Rust, C++, Julia, Kotlin, and others, and is also capable of generating Python code with type annotations.
To translate the code, use a command in the terminal, after which the generated code is compiled.
Documentation with instructions for installing the necessary libraries and formatters is available on the project website.
🔗 GitHub
#Python
🆔 @Python4all_pro
#NumPy cheat sheet for #datascience :
*Array Creation*
1.
2.
3.
4.
5.
6.
*Array Operations*
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
*Array Indexing*
ادامه در پست بعد👇
#cheat_sheet #Python
🆔 @Python4all_pro
*Array Creation*
1.
numpy.array()
- Create an array from a list or other iterable.2.
numpy.zeros()
- Create an array filled with zeros.3.
numpy.ones()
- Create an array filled with ones.4.
numpy.empty()
- Create an empty array.5.
numpy.arange()
- Create an array with evenly spaced values.6.
numpy.linspace()
- Create an array with evenly spaced values.*Array Operations*
1.
+
- Element-wise addition.2.
-
- Element-wise subtraction.3.
*
- Element-wise multiplication.4.
/
- Element-wise division.5.
**
- Element-wise exponentiation.6.
numpy.sum()
- Sum of all elements.7.
numpy.mean()
- Mean of all elements.8.
numpy.median()
- Median of all elements.9.
numpy.std()
- Standard deviation.10.
numpy.var()
- Variance.*Array Indexing*
ادامه در پست بعد👇
#cheat_sheet #Python
🆔 @Python4all_pro
#NumPy cheat sheet for #datascience :
*Array Creation*
1.
2.
3.
4.
5.
6.
*Array Operations*
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
*Array Indexing*
1.
2.
3.
*Array Reshaping*
1.
2.
3.
*Array Manipulation*
1.
2.
3.
4.
*Mathematical Functions*
1.
2.
3.
4.
5.
*Statistical Functions*
1.
2.
3.
4.
*Random Number Generation*
1.
2.
3.
*Linear Algebra*
1.
2.
3.
#cheat_sheet #Python
🆔 @Python4all_pro
*Array Creation*
1.
numpy.array()
- Create an array from a list or other iterable.2.
numpy.zeros()
- Create an array filled with zeros.3.
numpy.ones()
- Create an array filled with ones.4.
numpy.empty()
- Create an empty array.5.
numpy.arange()
- Create an array with evenly spaced values.6.
numpy.linspace()
- Create an array with evenly spaced values.*Array Operations*
1.
+
- Element-wise addition.2.
-
- Element-wise subtraction.3.
*
- Element-wise multiplication.4.
/
- Element-wise division.5.
**
- Element-wise exponentiation.6.
numpy.sum()
- Sum of all elements.7.
numpy.mean()
- Mean of all elements.8.
numpy.median()
- Median of all elements.9.
numpy.std()
- Standard deviation.10.
numpy.var()
- Variance.*Array Indexing*
1.
arr[i]
- Access ith element.2.
arr[i:j]
- Access slice from ith to jth element.3.
arr[i:j:k]
- Access slice with step k.*Array Reshaping*
1.
arr.reshape()
- Reshape array.2.
arr.flatten()
- Flatten array.3.
arr.ravel()
- Flatten array.*Array Manipulation*
1.
numpy.concatenate()
- Concatenate arrays.2.
numpy.split()
- Split array.3.
numpy.transpose()
- Transpose array.4.
numpy.flip()
- Flip array.*Mathematical Functions*
1.
numpy.sin()
- Sine.2.
numpy.cos()
- Cosine.3.
numpy.tan()
- Tangent.4.
numpy.exp()
- Exponential.5.
numpy.log()
- Natural logarithm.*Statistical Functions*
1.
numpy.min()
- Minimum value.2.
numpy.max()
- Maximum value.3.
numpy.percentile()
- Percentile.4.
numpy.quantile()
- Quantile.*Random Number Generation*
1.
numpy.random.rand()
- Random numbers.2.
numpy.random.normal()
- Normal distribution.3.
numpy.random.uniform()
- Uniform distribution.*Linear Algebra*
1.
numpy.dot()
- Dot product.2.
numpy.matmul()
- Matrix multiplication.3.
numpy.linalg.inv()
- Matrix inverse.#cheat_sheet #Python
🆔 @Python4all_pro
Build 50+ Python Applications for Beginners | 10 Lines of Code
https://morioh.com/p/351b8ec6db7f
#code #Python
🆔 @Python4all_pro
https://morioh.com/p/351b8ec6db7f
#code #Python
🆔 @Python4all_pro