๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ก๐ผ๐, ๐ฃ๐ฎ๐ ๐๐ณ๐๐ฒ๐ฟ ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐บ๐ฒ๐ป๐!๐
Unlock Opportunities with 500+ Elite Hiring Partners
Eligibility:- BE/BTech / BCA / BSc
๐ 2000+ Students Placed
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ๐:-
https://pdlink.in/4hO7rWY
Hurry๐โโ๏ธ, limited seats available!
Unlock Opportunities with 500+ Elite Hiring Partners
Eligibility:- BE/BTech / BCA / BSc
๐ 2000+ Students Placed
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ๐:-
https://pdlink.in/4hO7rWY
Hurry๐โโ๏ธ, limited seats available!
โค1
List of Python Project Ideas๐ก๐จ๐ปโ๐ป๐ -
Beginner Projects
๐น Calculator
๐น To-Do List
๐น Number Guessing Game
๐น Basic Web Scraper
๐น Password Generator
๐น Flashcard Quizzer
๐น Simple Chatbot
๐น Weather App
๐น Unit Converter
๐น Rock-Paper-Scissors Game
Intermediate Projects
๐ธ Personal Diary
๐ธ Web Scraping Tool
๐ธ Expense Tracker
๐ธ Flask Blog
๐ธ Image Gallery
๐ธ Chat Application
๐ธ API Wrapper
๐ธ Markdown to HTML Converter
๐ธ Command-Line Pomodoro Timer
๐ธ Basic Game with Pygame
Advanced Projects
๐บ Social Media Dashboard
๐บ Machine Learning Model
๐บ Data Visualization Tool
๐บ Portfolio Website
๐บ Blockchain Simulation
๐บ Chatbot with NLP
๐บ Multi-user Blog Platform
๐บ Automated Web Tester
๐บ File Organizer
Beginner Projects
๐น Calculator
๐น To-Do List
๐น Number Guessing Game
๐น Basic Web Scraper
๐น Password Generator
๐น Flashcard Quizzer
๐น Simple Chatbot
๐น Weather App
๐น Unit Converter
๐น Rock-Paper-Scissors Game
Intermediate Projects
๐ธ Personal Diary
๐ธ Web Scraping Tool
๐ธ Expense Tracker
๐ธ Flask Blog
๐ธ Image Gallery
๐ธ Chat Application
๐ธ API Wrapper
๐ธ Markdown to HTML Converter
๐ธ Command-Line Pomodoro Timer
๐ธ Basic Game with Pygame
Advanced Projects
๐บ Social Media Dashboard
๐บ Machine Learning Model
๐บ Data Visualization Tool
๐บ Portfolio Website
๐บ Blockchain Simulation
๐บ Chatbot with NLP
๐บ Multi-user Blog Platform
๐บ Automated Web Tester
๐บ File Organizer
โค7
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Learn Fundamental Skills with Free Online Courses & Earn Certificates
- AI
- GenAI
- Data Science,
- BigData
- Python
- Cloud Computing
- Machine Learning
- Cyber Security
๐๐ข๐ง๐ค ๐:-
https://linkpd.in/freecourses
Enroll for FREE & Get Certified ๐
Learn Fundamental Skills with Free Online Courses & Earn Certificates
- AI
- GenAI
- Data Science,
- BigData
- Python
- Cloud Computing
- Machine Learning
- Cyber Security
๐๐ข๐ง๐ค ๐:-
https://linkpd.in/freecourses
Enroll for FREE & Get Certified ๐
โค4
Complete roadmap to learn Python and Data Structures & Algorithms (DSA) in 2 months
### Week 1: Introduction to Python
Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions
Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules
Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode
### Week 2: Advanced Python Concepts
Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions
Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files
Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation
Day 14: Practice Day
- Solve intermediate problems on coding platforms
### Week 3: Introduction to Data Structures
Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists
Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues
Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions
Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues
### Week 4: Fundamental Algorithms
Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort
Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis
Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques
Day 28: Practice Day
- Solve problems on sorting, searching, and hashing
### Week 5: Advanced Data Structures
Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)
Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps
Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)
Day 35: Practice Day
- Solve problems on trees, heaps, and graphs
### Week 6: Advanced Algorithms
Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)
Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms
Day 40-41: Graph Algorithms
- Dijkstraโs algorithm for shortest path
- Kruskalโs and Primโs algorithms for minimum spanning tree
Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms
### Week 7: Problem Solving and Optimization
Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems
Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef
Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization
Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them
### Week 8: Final Stretch and Project
Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts
Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project
Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems
Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report
Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)
Best DSA RESOURCES: https://topmate.io/coding/886874
Credits: https://t.me/free4unow_backup
ENJOY LEARNING ๐๐
### Week 1: Introduction to Python
Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions
Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules
Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode
### Week 2: Advanced Python Concepts
Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions
Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files
Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation
Day 14: Practice Day
- Solve intermediate problems on coding platforms
### Week 3: Introduction to Data Structures
Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists
Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues
Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions
Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues
### Week 4: Fundamental Algorithms
Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort
Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis
Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques
Day 28: Practice Day
- Solve problems on sorting, searching, and hashing
### Week 5: Advanced Data Structures
Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)
Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps
Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)
Day 35: Practice Day
- Solve problems on trees, heaps, and graphs
### Week 6: Advanced Algorithms
Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)
Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms
Day 40-41: Graph Algorithms
- Dijkstraโs algorithm for shortest path
- Kruskalโs and Primโs algorithms for minimum spanning tree
Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms
### Week 7: Problem Solving and Optimization
Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems
Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef
Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization
Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them
### Week 8: Final Stretch and Project
Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts
Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project
Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems
Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report
Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)
Best DSA RESOURCES: https://topmate.io/coding/886874
Credits: https://t.me/free4unow_backup
ENJOY LEARNING ๐๐
โค9
Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.
1. Python Basics
- Variables:
- Data Types:
- Integers:
- Control Structures:
-
- Loops:
- While loop:
2. Importing Libraries
- NumPy:
- Pandas:
- Matplotlib:
- Seaborn:
3. NumPy for Numerical Data
- Creating Arrays:
- Array Operations:
- Reshaping Arrays:
- Indexing and Slicing:
4. Pandas for Data Manipulation
- Creating DataFrames:
- Reading Data:
- Basic Operations:
- Selecting Columns:
- Filtering Data:
- Handling Missing Data:
- GroupBy:
5. Data Visualization
- Matplotlib:
- Seaborn:
6. Common Data Operations
- Merging DataFrames:
- Pivot Table:
- Applying Functions:
7. Basic Statistics
- Descriptive Stats:
- Correlation:
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python ๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
1. Python Basics
- Variables:
x = 10
y = "Hello"
- Data Types:
- Integers:
x = 10
- Floats: y = 3.14
- Strings: name = "Alice"
- Lists: my_list = [1, 2, 3]
- Dictionaries: my_dict = {"key": "value"}
- Tuples: my_tuple = (1, 2, 3)
- Control Structures:
-
if, elif, else
statements- Loops:
for i in range(5):
print(i)
- While loop:
while x < 5:
print(x)
x += 1
2. Importing Libraries
- NumPy:
import numpy as np
- Pandas:
import pandas as pd
- Matplotlib:
import matplotlib.pyplot as plt
- Seaborn:
import seaborn as sns
3. NumPy for Numerical Data
- Creating Arrays:
arr = np.array([1, 2, 3, 4])
- Array Operations:
arr.sum()
arr.mean()
- Reshaping Arrays:
arr.reshape((2, 2))
- Indexing and Slicing:
arr[0:2] # First two elements
4. Pandas for Data Manipulation
- Creating DataFrames:
df = pd.DataFrame({
'col1': [1, 2, 3],
'col2': ['A', 'B', 'C']
})
- Reading Data:
df = pd.read_csv('file.csv')
- Basic Operations:
df.head() # First 5 rows
df.describe() # Summary statistics
df.info() # DataFrame info
- Selecting Columns:
df['col1']
df[['col1', 'col2']]
- Filtering Data:
df[df['col1'] > 2]
- Handling Missing Data:
df.dropna() # Drop missing values
df.fillna(0) # Replace missing values
- GroupBy:
df.groupby('col2').mean()
5. Data Visualization
- Matplotlib:
plt.plot(df['col1'], df['col2'])
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Title')
plt.show()
- Seaborn:
sns.histplot(df['col1'])
sns.boxplot(x='col1', y='col2', data=df)
6. Common Data Operations
- Merging DataFrames:
pd.merge(df1, df2, on='key')
- Pivot Table:
df.pivot_table(index='col1', columns='col2', values='col3')
- Applying Functions:
df['col1'].apply(lambda x: x*2)
7. Basic Statistics
- Descriptive Stats:
df['col1'].mean()
df['col1'].median()
df['col1'].std()
- Correlation:
df.corr()
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python ๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
โค6
๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ ๐ฐ๐น๐ฎ๐๐ ๐ถ๐ป ๐๐๐ฑ๐ฒ๐ฟ๐ฎ๐ฏ๐ฎ๐ฑ/๐ฃ๐๐ป๐ฒ ๐
๐ฅ Learn Data Analytics with Real-time Projects ,Hands-on Tools
โจ Highlights:
โ 100% Placement Support
โ 500+ Hiring Partners
โ Weekly Hiring Drives
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ๐:-
๐น Hyderabad :- https://pdlink.in/4kFhjn3
๐น Pune:- https://pdlink.in/45p4GrC
๐น Noida :- https://linkpd.in/DaNoida
Hurry Up ๐โโ๏ธ! Limited seats are available.
๐ฅ Learn Data Analytics with Real-time Projects ,Hands-on Tools
โจ Highlights:
โ 100% Placement Support
โ 500+ Hiring Partners
โ Weekly Hiring Drives
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ๐:-
๐น Hyderabad :- https://pdlink.in/4kFhjn3
๐น Pune:- https://pdlink.in/45p4GrC
๐น Noida :- https://linkpd.in/DaNoida
Hurry Up ๐โโ๏ธ! Limited seats are available.
โค3
๐ฅ ๐ฆ๐ธ๐ถ๐น๐น ๐จ๐ฝ ๐๐ฒ๐ณ๐ผ๐ฟ๐ฒ ๐ฎ๐ฌ๐ฎ๐ฑ ๐๐ป๐ฑ๐!
๐ 100% FREE Online Courses in
โ๏ธ AI
โ๏ธ Data Science
โ๏ธ Cloud Computing
โ๏ธ Cyber Security
โ๏ธ Python
๐๐ป๐ฟ๐ผ๐น๐น ๐ถ๐ป ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐๐:-
https://linkpd.in/freeskills
Get Certified & Stay Ahead๐
๐ 100% FREE Online Courses in
โ๏ธ AI
โ๏ธ Data Science
โ๏ธ Cloud Computing
โ๏ธ Cyber Security
โ๏ธ Python
๐๐ป๐ฟ๐ผ๐น๐น ๐ถ๐ป ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐๐:-
https://linkpd.in/freeskills
Get Certified & Stay Ahead๐
โค3
15 Coding Project Ideas ๐
Beginner Level:
1. ๐๏ธ File Organizer Script
2. ๐งพ Expense Tracker (CLI or GUI)
3. ๐ Password Generator
4. ๐ Simple Calendar App
5. ๐น๏ธ Number Guessing Game
Intermediate Level:
6. ๐ฐ News Aggregator using API
7. ๐ง Email Sender App
8. ๐ณ๏ธ Polling/Voting System
9. ๐งโ๐ Student Management System
10. ๐ท๏ธ URL Shortener
Advanced Level:
11. ๐ฃ๏ธ Real-Time Chat App (with backend)
12. ๐ฆ Inventory Management System
13. ๐ฆ Budgeting App with Charts
14. ๐ฅ Appointment Booking System
15. ๐ง AI-powered Text Summarizer
Credits: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
React โค๏ธ for more
Beginner Level:
1. ๐๏ธ File Organizer Script
2. ๐งพ Expense Tracker (CLI or GUI)
3. ๐ Password Generator
4. ๐ Simple Calendar App
5. ๐น๏ธ Number Guessing Game
Intermediate Level:
6. ๐ฐ News Aggregator using API
7. ๐ง Email Sender App
8. ๐ณ๏ธ Polling/Voting System
9. ๐งโ๐ Student Management System
10. ๐ท๏ธ URL Shortener
Advanced Level:
11. ๐ฃ๏ธ Real-Time Chat App (with backend)
12. ๐ฆ Inventory Management System
13. ๐ฆ Budgeting App with Charts
14. ๐ฅ Appointment Booking System
15. ๐ง AI-powered Text Summarizer
Credits: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
React โค๏ธ for more
โค4
๐ฃ๐ฎ๐ ๐๐ณ๐๐ฒ๐ฟ ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐บ๐ฒ๐ป๐ ๐ง๐ฟ๐ฎ๐ถ๐ป๐ถ๐ป๐ด ๐
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ผ๐ฑ๐ถ๐ป๐ด & ๐๐ฒ๐ ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐ฑ ๐๐ป ๐ง๐ผ๐ฝ ๐ ๐ก๐๐
Eligibility:- BE/BTech / BCA / BSc
๐ 2000+ Students Placed
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ๐:-
๐ข๐ป๐น๐ถ๐ป๐ฒ :- https://pdlink.in/4hO7rWY
๐น Hyderabad :- https://pdlink.in/4cJUWtx
๐น Pune :- https://pdlink.in/3YA32zi
๐น Noida :- https://linkpd.in/NoidaFSD
( Hurry Up ๐โโ๏ธLimited Slots )
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ผ๐ฑ๐ถ๐ป๐ด & ๐๐ฒ๐ ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐ฑ ๐๐ป ๐ง๐ผ๐ฝ ๐ ๐ก๐๐
Eligibility:- BE/BTech / BCA / BSc
๐ 2000+ Students Placed
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
๐๐ผ๐ผ๐ธ ๐ฎ ๐๐ฅ๐๐ ๐๐ฒ๐บ๐ผ๐:-
๐ข๐ป๐น๐ถ๐ป๐ฒ :- https://pdlink.in/4hO7rWY
๐น Hyderabad :- https://pdlink.in/4cJUWtx
๐น Pune :- https://pdlink.in/3YA32zi
๐น Noida :- https://linkpd.in/NoidaFSD
( Hurry Up ๐โโ๏ธLimited Slots )
โค4
When to Use Which Programming Language?
C โ OS Development, Embedded Systems, Game Engines
C++ โ Game Dev, High-Performance Apps, Finance
Java โ Enterprise Apps, Android, Backend
C# โ Unity Games, Windows Apps
Python โ AI/ML, Data, Automation, Web Dev
JavaScript โ Frontend, Full-Stack, Web Games
Golang โ Cloud Services, APIs, Networking
Swift โ iOS/macOS Apps
Kotlin โ Android, Backend
PHP โ Web Dev (WordPress, Laravel)
Ruby โ Web Dev (Rails), Prototypes
Rust โ System Apps, Blockchain, HPC
Lua โ Game Scripting (Roblox, WoW)
R โ Stats, Data Science, Bioinformatics
SQL โ Data Analysis, DB Management
TypeScript โ Scalable Web Apps
Node.js โ Backend, Real-Time Apps
React โ Modern Web UIs
Vue โ Lightweight SPAs
Django โ AI/ML Backend, Web Dev
Laravel โ Full-Stack PHP
Blazor โ Web with .NET
Spring Boot โ Microservices, Java Enterprise
Ruby on Rails โ MVPs, Startups
HTML/CSS โ UI/UX, Web Design
Git โ Version Control
Linux โ Server, Security, DevOps
DevOps โ Infra Automation, CI/CD
CI/CD โ Testing + Deployment
Docker โ Containerization
Kubernetes โ Cloud Orchestration
Microservices โ Scalable Backends
Selenium โ Web Testing
Playwright โ Modern Web Automation
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
ENJOY LEARNING ๐๐
C โ OS Development, Embedded Systems, Game Engines
C++ โ Game Dev, High-Performance Apps, Finance
Java โ Enterprise Apps, Android, Backend
C# โ Unity Games, Windows Apps
Python โ AI/ML, Data, Automation, Web Dev
JavaScript โ Frontend, Full-Stack, Web Games
Golang โ Cloud Services, APIs, Networking
Swift โ iOS/macOS Apps
Kotlin โ Android, Backend
PHP โ Web Dev (WordPress, Laravel)
Ruby โ Web Dev (Rails), Prototypes
Rust โ System Apps, Blockchain, HPC
Lua โ Game Scripting (Roblox, WoW)
R โ Stats, Data Science, Bioinformatics
SQL โ Data Analysis, DB Management
TypeScript โ Scalable Web Apps
Node.js โ Backend, Real-Time Apps
React โ Modern Web UIs
Vue โ Lightweight SPAs
Django โ AI/ML Backend, Web Dev
Laravel โ Full-Stack PHP
Blazor โ Web with .NET
Spring Boot โ Microservices, Java Enterprise
Ruby on Rails โ MVPs, Startups
HTML/CSS โ UI/UX, Web Design
Git โ Version Control
Linux โ Server, Security, DevOps
DevOps โ Infra Automation, CI/CD
CI/CD โ Testing + Deployment
Docker โ Containerization
Kubernetes โ Cloud Orchestration
Microservices โ Scalable Backends
Selenium โ Web Testing
Playwright โ Modern Web Automation
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
ENJOY LEARNING ๐๐
โค11๐1