Coding Projects
61K subscribers
760 photos
1 video
277 files
362 links
Channel specialized for advanced concepts and projects to master:
* Python programming
* Web development
* Java programming
* Artificial Intelligence
* Machine Learning

Managed by: @love_data
Download Telegram
Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.


1. Python Basics
- Variables:
x = 10
y = "Hello"

- Data Types:
  - Integers: x = 10
  - Floats: y = 3.14
  - Strings: name = "Alice"
  - Lists: my_list = [1, 2, 3]
  - Dictionaries: my_dict = {"key": "value"}
  - Tuples: my_tuple = (1, 2, 3)

- Control Structures:
  - if, elif, else statements
  - Loops: 
  
    for i in range(5):
        print(i)
   

  - While loop:
  
    while x < 5:
        print(x)
        x += 1
   

2. Importing Libraries

- NumPy:
  import numpy as np
 

- Pandas:
  import pandas as pd
 

- Matplotlib:
  import matplotlib.pyplot as plt
 

- Seaborn:
  import seaborn as sns
 

3. NumPy for Numerical Data

- Creating Arrays:
  arr = np.array([1, 2, 3, 4])
 

- Array Operations:
  arr.sum()
  arr.mean()
 

- Reshaping Arrays:
  arr.reshape((2, 2))
 

- Indexing and Slicing:
  arr[0:2]  # First two elements
 

4. Pandas for Data Manipulation

- Creating DataFrames:
  df = pd.DataFrame({
      'col1': [1, 2, 3],
      'col2': ['A', 'B', 'C']
  })
 

- Reading Data:
  df = pd.read_csv('file.csv')
 

- Basic Operations:
  df.head()          # First 5 rows
  df.describe()      # Summary statistics
  df.info()          # DataFrame info
 

- Selecting Columns:
  df['col1']
  df[['col1', 'col2']]
 

- Filtering Data:
  df[df['col1'] > 2]
 

- Handling Missing Data:
  df.dropna()        # Drop missing values
  df.fillna(0)       # Replace missing values
 

- GroupBy:
  df.groupby('col2').mean()
 

5. Data Visualization

- Matplotlib:
  plt.plot(df['col1'], df['col2'])
  plt.xlabel('X-axis')
  plt.ylabel('Y-axis')
  plt.title('Title')
  plt.show()
 

- Seaborn:
  sns.histplot(df['col1'])
  sns.boxplot(x='col1', y='col2', data=df)
 

6. Common Data Operations

- Merging DataFrames:
  pd.merge(df1, df2, on='key')
 

- Pivot Table:
  df.pivot_table(index='col1', columns='col2', values='col3')
 

- Applying Functions:
  df['col1'].apply(lambda x: x*2)
 

7. Basic Statistics

- Descriptive Stats:
  df['col1'].mean()
  df['col1'].median()
  df['col1'].std()
 

- Correlation:
  df.corr()
 

This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.

I have curated the best resources to learn Python ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this ๐Ÿ‘โค๏ธ
โค6
DSA Handwritten Notes
โค5๐Ÿ”ฅ1
๐Ÿ”ฅ ๐—ฆ๐—ธ๐—ถ๐—น๐—น ๐—จ๐—ฝ ๐—•๐—ฒ๐—ณ๐—ผ๐—ฟ๐—ฒ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐—˜๐—ป๐—ฑ๐˜€!

๐ŸŽ“ 100% FREE Online Courses in
โœ”๏ธ AI
โœ”๏ธ Data Science
โœ”๏ธ Cloud Computing
โœ”๏ธ Cyber Security
โœ”๏ธ Python

 ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—ถ๐—ป ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ‘‡:- 

https://linkpd.in/freeskills

Get Certified & Stay Ahead๐ŸŽ“
โค3
15 Coding Project Ideas ๐Ÿš€

Beginner Level:
1. ๐Ÿ—‚๏ธ File Organizer Script
2. ๐Ÿงพ Expense Tracker (CLI or GUI)
3. ๐Ÿ” Password Generator
4. ๐Ÿ“… Simple Calendar App
5. ๐Ÿ•น๏ธ Number Guessing Game

Intermediate Level:
6. ๐Ÿ“ฐ News Aggregator using API
7. ๐Ÿ“ง Email Sender App
8. ๐Ÿ—ณ๏ธ Polling/Voting System
9. ๐Ÿง‘โ€๐ŸŽ“ Student Management System
10. ๐Ÿท๏ธ URL Shortener

Advanced Level:
11. ๐Ÿ—ฃ๏ธ Real-Time Chat App (with backend)
12. ๐Ÿ“ฆ Inventory Management System
13. ๐Ÿฆ Budgeting App with Charts
14. ๐Ÿฅ Appointment Booking System
15. ๐Ÿง  AI-powered Text Summarizer

Credits: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502

React โค๏ธ for more
โค4
โค2๐Ÿ‘1
When to Use Which Programming Language?

C โž OS Development, Embedded Systems, Game Engines
C++ โž Game Dev, High-Performance Apps, Finance
Java โž Enterprise Apps, Android, Backend
C# โž Unity Games, Windows Apps
Python โž AI/ML, Data, Automation, Web Dev
JavaScript โž Frontend, Full-Stack, Web Games
Golang โž Cloud Services, APIs, Networking
Swift โž iOS/macOS Apps
Kotlin โž Android, Backend
PHP โž Web Dev (WordPress, Laravel)
Ruby โž Web Dev (Rails), Prototypes
Rust โž System Apps, Blockchain, HPC
Lua โž Game Scripting (Roblox, WoW)
R โž Stats, Data Science, Bioinformatics
SQL โž Data Analysis, DB Management
TypeScript โž Scalable Web Apps
Node.js โž Backend, Real-Time Apps
React โž Modern Web UIs
Vue โž Lightweight SPAs
Django โž AI/ML Backend, Web Dev
Laravel โž Full-Stack PHP
Blazor โž Web with .NET
Spring Boot โž Microservices, Java Enterprise
Ruby on Rails โž MVPs, Startups
HTML/CSS โž UI/UX, Web Design
Git โž Version Control
Linux โž Server, Security, DevOps
DevOps โž Infra Automation, CI/CD
CI/CD โž Testing + Deployment
Docker โž Containerization
Kubernetes โž Cloud Orchestration
Microservices โž Scalable Backends
Selenium โž Web Testing
Playwright โž Modern Web Automation

Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค11๐Ÿ‘1
If you want to Excel at using the most used database language in the world, learn these powerful SQL features:

โ€ข Wildcards (%, _) โ€“ Flexible pattern matching
โ€ข Window Functions โ€“ ROW_NUMBER(), RANK(), DENSE_RANK(), LEAD(), LAG()
โ€ข Common Table Expressions (CTEs) โ€“ WITH for better readability
โ€ข Recursive Queries โ€“ Handle hierarchical data
โ€ข STRING Functions โ€“ LEFT(), RIGHT(), LEN(), TRIM(), UPPER(), LOWER()
โ€ข Date Functions โ€“ DATEDIFF(), DATEADD(), FORMAT()
โ€ข Pivot & Unpivot โ€“ Transform row data into columns
โ€ข Aggregate Functions โ€“ SUM(), AVG(), COUNT(), MIN(), MAX()
โ€ข Joins & Self Joins โ€“ Master INNER, LEFT, RIGHT, FULL, SELF JOIN
โ€ข Indexing โ€“ Speed up queries with CREATE INDEX

Like it if you need a complete tutorial on all these topics! ๐Ÿ‘โค๏ธ

#sql
โค7๐Ÿ‘1
โค8๐Ÿ‘2๐Ÿ‘1
DSA Handwritten Notes
โค2