Forwarded from Deleted Account
MScThesisRichardSocher.pdf
9.1 MB
#A Learning-Based Hierarchical Model for Vessel Segmentation
by #Richard Socher
#thesis
@Machine_learn
by #Richard Socher
#thesis
@Machine_learn
Forwarded from Deleted Account
1802.01274.pdf
2.1 MB
Forwarded from Deleted Account
Learning scientific with phython.pdf
5.4 MB
Forwarded from Deleted Account
Deep Learning and Data Labeling for Medical Applications.pdf
46 MB
Forwarded from Deleted Account
deep_learning_adaptive_computation.pdf
16 MB
Forwarded from Deleted Account
deep_learning_and_convolutional.pdf
13.7 MB
Forwarded from Deleted Account
776cfc9c3f0c80c93f3e03f564c8f08348c41abc.pdf
47.1 MB
سلام
از دوستان اگر کسی پایان نامش مرتبط با موضوع«بهبود استخراج قوانین انجمني با استفاده از روش های تکاملي» هستش لطفا جهت همکاری به این ایدی پیام بدن. با تشکر
@mahdi7_7_7
از دوستان اگر کسی پایان نامش مرتبط با موضوع«بهبود استخراج قوانین انجمني با استفاده از روش های تکاملي» هستش لطفا جهت همکاری به این ایدی پیام بدن. با تشکر
@mahdi7_7_7
Machine learning books and papers pinned «سلام از دوستان اگر کسی پایان نامش مرتبط با موضوع«بهبود استخراج قوانین انجمني با استفاده از روش های تکاملي» هستش لطفا جهت همکاری به این ایدی پیام بدن. با تشکر @mahdi7_7_7»
Forwarded from Deleted Account
4_5801048860251915627.pdf
83 MB
Forwarded from Deleted Account
[Adrian_Rosebrock]_Deep_Learning_for_Computer_Vision.pdf
26.4 MB
p.y.b:
Here is a list of what I believe are the 10 Practical Steps for #DataScience:
1. Programming
a. Python - https://lnkd.in/gGQ7cuv
b. R - https://lnkd.in/giMGbph
c. SQL - https://lnkd.in/gM8nMNP
d. Command Line - https://lnkd.in/e3EQuis
2. Stats/Prob/Math
a. Coursera's Statistics w/ R - https://lnkd.in/gGT9NEf
b. edX's Probability - https://lnkd.in/gpUyC3P
c. Khan Academy Linear Algebra - https://lnkd.in/gMshbX4
3. Data Viz
a. Python Matplotlib- https://lnkd.in/gr3ifNt
b. R ggplot2 - https://lnkd.in/eThJXNr
4. Data Manipulation
a. Python Pandas - https://lnkd.in/g9kfpX4
b. R dplyr - https://lnkd.in/gAWusih
5. #MachineLearning
a. Google Crash Course - https://lnkd.in/gSgkVcT
b. Stanford Coursera - https://lnkd.in/g8ZG557
c. ISLR Book - https://lnkd.in/gk8GPZC
6. Experimental Design
a. Udacity A/B Testing - https://lnkd.in/gCerh4f
7. Business Sense
a. Metrics - https://lnkd.in/gZAG7bS
8. Communication
a. Storytelling - https://lnkd.in/gwjxVUu
9. Profile Building
a. GitHub - https://lnkd.in/g4r9naJ
b. LinkedIn - https://lnkd.in/g-KHHEC
c. Kaggle - https://lnkd.in/gBC77Hu
d. DS Resume - https://lnkd.in/gU8WVAF
🏅 10. Job Search
a. Daily Expert Tips & Advice - https://lnkd.in/g8z-xXD
---
Hope this helps! 👍
Updated on my site - http://www.claoudml.co/
Here is a list of what I believe are the 10 Practical Steps for #DataScience:
1. Programming
a. Python - https://lnkd.in/gGQ7cuv
b. R - https://lnkd.in/giMGbph
c. SQL - https://lnkd.in/gM8nMNP
d. Command Line - https://lnkd.in/e3EQuis
2. Stats/Prob/Math
a. Coursera's Statistics w/ R - https://lnkd.in/gGT9NEf
b. edX's Probability - https://lnkd.in/gpUyC3P
c. Khan Academy Linear Algebra - https://lnkd.in/gMshbX4
3. Data Viz
a. Python Matplotlib- https://lnkd.in/gr3ifNt
b. R ggplot2 - https://lnkd.in/eThJXNr
4. Data Manipulation
a. Python Pandas - https://lnkd.in/g9kfpX4
b. R dplyr - https://lnkd.in/gAWusih
5. #MachineLearning
a. Google Crash Course - https://lnkd.in/gSgkVcT
b. Stanford Coursera - https://lnkd.in/g8ZG557
c. ISLR Book - https://lnkd.in/gk8GPZC
6. Experimental Design
a. Udacity A/B Testing - https://lnkd.in/gCerh4f
7. Business Sense
a. Metrics - https://lnkd.in/gZAG7bS
8. Communication
a. Storytelling - https://lnkd.in/gwjxVUu
9. Profile Building
a. GitHub - https://lnkd.in/g4r9naJ
b. LinkedIn - https://lnkd.in/g-KHHEC
c. Kaggle - https://lnkd.in/gBC77Hu
d. DS Resume - https://lnkd.in/gU8WVAF
🏅 10. Job Search
a. Daily Expert Tips & Advice - https://lnkd.in/g8z-xXD
---
Hope this helps! 👍
Updated on my site - http://www.claoudml.co/
lnkd.in
LinkedIn
This link will take you to a page that’s not on LinkedIn
Forwarded from Deleted Account
Learning predictive analytic with python.pdf
5.1 MB
Forwarded from Deleted Account
deep_learning_adaptive_computation.pdf
16 MB