Machine learning books and papers
23.2K subscribers
981 photos
54 videos
929 files
1.32K links
Download Telegram
با عرض سلام نفر سوم از مقاله مروری بالا رو نیاز داریم. با قبولی شرایط کسی نیاز داشت به بنده اطلاع بده.
نشریه مد نظر : Nature
@Raminmousa
3
Artificial Intelligence for Beginners - A Curriculum

📚 Course

@Machine_learn
👍5
This media is not supported in your browser
VIEW IN TELEGRAM
🛹 RollingDepth: Video Depth without Video Models

🔗 Discover More:
* Source Code: GitHub
* Paper Page: RollingDepth
* Try Demo: Try it here
* Paper Page: RollingDepth

@Machine_learn
Hands-On Large Language Models

📚 Github


@Machine_learn
👍4
با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)

جهت تهیه می تونین به ایدی بنده مراجعه کنین

@Raminmousa
👍1
Reinforcement Learning: An Overview

📕 Book

@Machine_learn
OminiControl: Minimal and Universal Control for Diffusion Transformer


🔗 Discover More:
* Source Code: GitHub
* Try Demo: Try it here
* Paper Page: Read Paper

@Machine_learn
1
Forwarded from Github LLMs
🌟 GRIN MoE: Mixture-of-Experts от Microsoft.


🟢total parameters: 16x3.8B;
🟢active parameters: 6.6B;
🟢context length: 4096;
🟢number of embeddings 4096;
🟢number of layers: 32;
https://t.me/deep_learning_proj


🟡Arxiv
🟡Demo
🖥Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
📑Drug Discovery in the Age of Artificial Intelligence: Transformative Target-Based Approaches


📎 Study the paper



@Machine_learn
👍2🔥1
🎓Ensemble approaches for Link Prediction


📎 Study thesis

@Machine_learn
👍2
📚Book Chapter:
Recent Advances in Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences



📎 Study

@Machine_learn
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 D-FINE:
D-FINE

# Create env via conda
conda create -n dfine python=3.11.9
conda activate dfine

# Install requirements for inference
pip install -r tools/inference/requirements.txt

# Install ONNX
pip install onnx onnxsim

# Choose a model
export model=l # s, m, x

# Inference
python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg # video.mp4


🟡Arxiv
🖥Github


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2
🌟 BioNeMo: A Framework for Developing AI Models for Drug Design.

NVIDIA BioNeMo2 Framework is a set of tools, libraries, and models for computational drug discovery and design.



▶️ Pre-trained models:

🟢 ESM-2 is a pre-trained bidirectional encoder (BERT-like) for amino acid sequences. BioNeMo2 includes checkpoints with parameters 650M and 3B;

🟢 Geneformer is a tabular scoring model that generates a dense representation of a cell's scRNA by examining co-expression patterns in individual cells.


▶️ Datasets:

🟠 CELLxGENE is a collection of publicly available single-cell datasets collected by the CZI (Chan Zuckerberg Initiative) with a total volume of 24 million cells;


🟠 UniProt is a database of clustered sets of protein sequences from UniProtKB, created on the basis of translated genomic data.



🟡 Project page
🟡 Documentation
🖥 GitHub

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics

https://www.nature.com/articles/s41467-023-39868-6.pdf

@Machine_learn
👍1🔥1
NPGPT: Natural Product-Like Compound Generation with GPT-based Chemical Language
Models


https://arxiv.org/pdf/2411.12886

@Machine_learn