Machine learning books and papers
23.1K subscribers
980 photos
54 videos
929 files
1.32K links
Download Telegram
Hyperparameter Optimization and Combined Data Sampling Techniques in Machine Learning for Customer Churn Prediction: A Comparative Analysis


📕 Paper: https://www.preprints.org/manuscript/202308.1478/v4

🔥 Dataset: https://www.kaggle.com/code/rinichristy/customer-churn-prediction-2020
@Machine_learn
4👍2
🪐 ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems


🐱 Github: https://github.com/stanford-futuredata/ares

📕 Paper: https://arxiv.org/abs/2311.09476

Dataset: https://paperswithcode.com/dataset/kilt

@Machine_learn
👍1
💥 Video-LLaVA: Learning United Visual Representation by Alignment Before Projection

🐱Github: https://github.com/PKU-YuanGroup/Video-LLaVA

🤗Demo: https://huggingface.co/spaces/LanguageBind/Video-LLaVA

📕Paper: https://arxiv.org/abs/2311.10122v1

Dataset: https://paperswithcode.com/dataset/mmbench

@Machine_learn
👍1
🗣 HierSpeech++: Bridging the Gap between Semantic and Acoustic Representation by Hierarchical Variational Inference for Zero-shot Speech Synthesis

🖥 Code: https://github.com/sh-lee-prml/hierspeechpp

🦾 Checkpoint: https://drive.google.com/drive/folders/1-L_90BlCkbPyKWWHTUjt5Fsu3kz0du0w?usp=sharing

⚡️ Demo: https://sh-lee-prml.github.io/HierSpeechpp-demo/

📚 Paper: https://arxiv.org/abs/2311.12454v1

🔗 Dataset: https://paperswithcode.com/dataset/libri-light

@Machine_learn
👍21
ChessVision - A dataset for logically coherent multi-label classification.


🖥 Github: https://github.com/espressovi/chessvisionchallenge

📕 Paper: https://arxiv.org/pdf/2311.12610v1.pdf

Tasks: https://paperswithcode.com/task/classification-1

@Machine_learn
👨‍💻با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)

🌐جهت تهیه می تونین به ایدی بنده مراجعه کنین

@Raminmousa 🧠
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Machine learning books and papers pinned «👨‍💻با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد 1: introduction to machine learning 2: Regression (linear and non-linear) 3: Tensorflow…»
dm.pdf
12.2 MB
Book: Algorithms for Decision Making
Authors: Mykel J. Kochenderfer ,Tim A. Wheeler
,Kyle H. Wray
ISBN: Null
year: 2022
pages: 700
Tags:#Decision making
@Machine_learn
👍51
🔥 Diffusion360: Seamless 360 Degree Panoramic Image Generation based on Diffusion Models.

🖥 Code: https://github.com/archerfmy/sd-t2i-360panoimage

📚 Paper: https://arxiv.org/abs/2311.13141v1

🔗 Dataset: https://paperswithcode.com/dataset/sun360

@Machine_learn
🔥21
ChessVision - A dataset for logically coherent multi-label classification.


🖥 Github: https://github.com/espressovi/chessvisionchallenge

📕 Paper: https://arxiv.org/abs/2311.12610

🔥Datasets: https://zenodo.org/records/8278015

@Machine_learn
🔥5👍2
Hyperparameter Optimization and Combined Data Sampling Techniques in Machine Learning for Customer Churn Prediction: A Comparative Analysis


📕 Paper: https://www.mdpi.com/2227-7080/11/6/167

🔥 Dataset: https://www.kaggle.com/code/rinichristy/customer-churn-prediction-2020

@Machine_learn
4