Machine learning books and papers
23.2K subscribers
981 photos
54 videos
929 files
1.32K links
Download Telegram
⏩ GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation



πŸ–₯ Github: https://github.com/chenhongyiyang/gpvit

➑️Paprer: https://arxiv.org/abs/2212.06795v1

βœ”οΈData Preparation: https://paperswithcode.com/dataset/must-c

@Machine_learn
❀1
⚑️ MVTN: Learning Multi-View Transformations for 3D Understanding



πŸ–₯Github: https://github.com/ajhamdi/mvtorch

⭐️ Paper: https://arxiv.org/abs/2212.13462v1

⏩ Dataset: https://paperswithcode.com/dataset/modelnet

⏩ Бlassification example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/classification.ipynb

➑️ Segmentation example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/segmentation.ipynb

@Machine_learn
Python Concurrency with asyncio Matthew Fowler.pdf
6.1 MB
Python Concurrency with asyncio Matthew Fowler
Matthew Fowler (2022)
#book #python 2022

@Machine_learn
❀5πŸ‘1
This media is not supported in your browser
VIEW IN TELEGRAM
When you are presenting a topic in the class and make eye contact with your friends😹😹😹
@Machine_learn
😍2πŸ‘1
Math-for-Programmers.pdf
27.7 MB
MEAP Edition
Manning Early Access Program
Math for Programmers
3D graphics, machine learning, and simulations with Python
Version 11
#book @Machine_learn
😍6πŸ‘5
book.pdf
52.1 MB
Multimodal Deep Learning
#book #DL #2023
@Machine_learn
πŸ‘8❀2
Boost Your Data Science Productivity.pdf
9.3 MB
30 Python Libraries to (Hugely) Boost Your Data Science Productivity
#Python
@Machine_learn
πŸ‘6
Build_a_Career_in_Data_Science_by_Emily_Robinson,_Jacqueline_Nolis.pdf
12.3 MB
Build a Career in Data Science
EMILY ROBINSON AND JACQUELINE NOLIS
#Data_Science
#Book
#ML
@Machine_learn
πŸ‘1
Data-Oriented Programming Reduce soft....pdf
7.1 MB
Data-Oriented Programming: Reduce software complexity (2022)
#Book
#Python
@Machine_learn
πŸ‘1
πŸ’¬ GLIGEN: Open-Set Grounded Text-to-Image Generation

GLIGEN’s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.


⭐️ Project: https://gligen.github.io/

⭐️ Demo: https://aka.ms/gligen

βœ…οΈ Paper: https://arxiv.org/abs/2301.07093

πŸ–₯ Github: https://github.com/gligen/GLIGEN

@Machine_learn
Apress.PyTorch.pdf
5.1 MB
PyTorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models, 2nd Edition (2022)
#Pythorch #book #python

@Machin_learn
πŸ”₯1
This media is not supported in your browser
VIEW IN TELEGRAM
AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling

Autoregressive approach for modeling dynamically deforming human bodies by Meta.


πŸ–₯ Github: github.com/facebookresearch/AutoAvatar

⭐️ Project: zqbai-jeremy.github.io/autoavatar

βœ…οΈ Paprer: arxiv.org/pdf/2203.13817.pdf

⏩ Dataset: https://amass.is.tue.mpg.de/index.html

⭐️ Video: https://zqbai-jeremy.github.io/autoavatar/static/images/video_arxiv.mp4

@Machine_learn
πŸ‘4❀1
πŸ–₯ Deep BCI SW ver. 1.0 is released.

πŸ–₯ Github: https://github.com/DeepBCI/Deep-BCI

⏩ Paper: https://arxiv.org/abs/2301.08448v1

➑️ Project: http://deepbci.korea.ac.kr/

@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
βœ…οΈ StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis




πŸ–₯ Github: github.com/autonomousvision/stylegan-t

βœ…οΈ Paper: arxiv.org/pdf/2301.09515.pdf

⭐️ Project: sites.google.com/view/stylegan-t

βœ”οΈ Video: https://www.youtube.com/watch?v=MMj8OTOUIok&embeds_euri=https%3A%2F%2Fsites.google.com%2F&feature=emb_logo

πŸ–₯ Projected GAN: https://github.com/autonomousvision/projected-gan

@Machine_learn
πŸ”₯3πŸ‘1
Pandas.Basics.pdf
9.8 MB
Pandas Basics
Oswald Campesato
#book #pandas #python
@Machne_learn
❀7
PACO: Parts and Attributes of Common Objects

πŸ–₯ Github
⭐️ Paper
➑️Project

@Machine_learn
❀2πŸ‘2
❔ PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development



πŸ–₯ Github: https://github.com/primeqa/primeqa

πŸ–₯ Notebooks: https://github.com/primeqa/primeqa/tree/main/notebooks

βœ…οΈ Paper: https://arxiv.org/abs/2301.09715v2

⭐️ Dataset: https://paperswithcode.com/dataset/wikitablequestions

βœ”οΈ Docs: https://primeqa.github.io/primeqa/installation.html

@Machine_learn
πŸ‘1πŸ”₯1