🚀 Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
🖥 Github: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO
📕 Paper: https://arxiv.org/abs/2309.11331v2
⏩ Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
🖥 Github: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO
📕 Paper: https://arxiv.org/abs/2309.11331v2
⏩ Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
InstructionERC
🖥 Github: https://github.com/LIN-SHANG/InstructERC
📕 Paper: https://arxiv.org/pdf/2309.11911v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
🖥 Github: https://github.com/LIN-SHANG/InstructERC
📕 Paper: https://arxiv.org/pdf/2309.11911v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
❤1
Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://t.me/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://t.me/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://t.me/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://t.me/DataScienceM
👍7❤1
🗣 Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition
🖥 Github: https://github.com/wenet-e2e/wespeaker
📕 Paper: https://arxiv.org/abs/2309.11730v1
⏩ Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
⭐️ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
pip3 install wespeakerruntime
🖥 Github: https://github.com/wenet-e2e/wespeaker
📕 Paper: https://arxiv.org/abs/2309.11730v1
⏩ Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
⭐️ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
🎓 BayesDLL: Bayesian Deep Learning Library
New Bayesian neural network library for PyTorch for large-scale deep network
🖥 Github: https://github.com/samsunglabs/bayesdll
📕 Paper: https://arxiv.org/abs/2309.12928v1
⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
New Bayesian neural network library for PyTorch for large-scale deep network
🖥 Github: https://github.com/samsunglabs/bayesdll
📕 Paper: https://arxiv.org/abs/2309.12928v1
⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
👍4❤3
Artificial Intelligence Class 10 (2023).pdf
20.8 MB
Book: ARTIFICIAL INTELLIGENCE (SUBJECT CODE 417) CLASS – 3
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
👍8🔥1
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
🖥 Github: https://github.com/dvlab-research/longlora
📕 Paper: https://arxiv.org/pdf/2309.12307v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
🖥 Github: https://github.com/dvlab-research/longlora
📕 Paper: https://arxiv.org/pdf/2309.12307v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
👍1
➕ fastMONAI: A low-code deep learning library for medical image analysis
Simplifying deep learning for medical imaging.
🖥 Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
📕 Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
🖥 Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
Simplifying deep learning for medical imaging.
git clone https://github.com/MMIV-ML/fastMONAI
🖥 Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
📕 Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
🖥 Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
👍4
30574277.pdf
20.5 MB
Book: Quantum Mechanics and
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Privacy-preserving in-context learning with differentially private few-shot generation
🖥 Github: https://github.com/microsoft/dp-few-shot-generation
📕 Paper: https://arxiv.org/pdf/2309.11765v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
🖥 Github: https://github.com/microsoft/dp-few-shot-generation
📕 Paper: https://arxiv.org/pdf/2309.11765v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
👍1
Developing Apps With GPT-4 and ChatGPT (2023).pdf
3 MB
Book: Developing Apps with GPT-4 and
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
✏️ Deep Geometrized Cartoon Line Inbetweening
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
🖥 Github: https://github.com/lisiyao21/animeinbet
☑️ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
📕 Paper: https://arxiv.org/pdf/2309.16643v1.pdf
⭐️ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
🖥 Github: https://github.com/lisiyao21/animeinbet
☑️ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
📕 Paper: https://arxiv.org/pdf/2309.16643v1.pdf
⭐️ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
👍4
Oreilly.Generative.Deep.Learning.pdf
57.9 MB
Book: Generative Deep Learning
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
❤5
Class Incremental Learning via Likelihood Ratio Based Task Prediction
🖥 Github: https://github.com/linhaowei1/tplr
📕 Paper: https://arxiv.org/pdf/2309.15048v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
🖥 Github: https://github.com/linhaowei1/tplr
📕 Paper: https://arxiv.org/pdf/2309.15048v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
Atom2D
🖥 Github: https://github.com/vincentx15/atom2d
📕 Paper: https://arxiv.org/pdf/2309.16519v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/atom3d
@Machine_learn
🖥 Github: https://github.com/vincentx15/atom2d
📕 Paper: https://arxiv.org/pdf/2309.16519v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/atom3d
@Machine_learn
☑️ Efficient Streaming Language Models with Attention Sinks
StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.
🖥 Github: https://github.com/mit-han-lab/streaming-llm
📕 Paper: http://arxiv.org/abs/2309.17453
⭐️ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.
🖥 Github: https://github.com/mit-han-lab/streaming-llm
📕 Paper: http://arxiv.org/abs/2309.17453
⭐️ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
❤3
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 GenSim: Generating Robotic Simulation Tasks via Large Language Models
🖥 Github: https://github.com/liruiw/gensim
✔️ Project: https://liruiw.github.io/gensim
📕 Paper: https://arxiv.org/abs/2310.01361v1
✅ Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim
⭐️ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim
@Machine_learn
🖥 Github: https://github.com/liruiw/gensim
✔️ Project: https://liruiw.github.io/gensim
📕 Paper: https://arxiv.org/abs/2310.01361v1
✅ Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim
⭐️ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim
@Machine_learn
👍2
✅️ T3Bench: Benchmarking Current Progress in Text-to-3D Generation
🖥 Github: https://github.com/THU-LYJ-Lab/T3Bench
📕 Paper: https://arxiv.org/abs/2310.02977v1
⭐️ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
🖥 Github: https://github.com/THU-LYJ-Lab/T3Bench
📕 Paper: https://arxiv.org/abs/2310.02977v1
⭐️ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
👍2
💻 Graph Structure Learning Benchmark (GSLB)
pip install GSLB
🖥 Github: https://github.com/gsl-benchmark/gslb
📕 Paper: https://arxiv.org/abs/2310.05163v1
⭐️ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning
@Machine_learn
pip install GSLB
🖥 Github: https://github.com/gsl-benchmark/gslb
📕 Paper: https://arxiv.org/abs/2310.05163v1
⭐️ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning
@Machine_learn
👍2
G4SATBench
🖥 Github: https://github.com/zhaoyu-li/g4satbench
📕 Paper: https://arxiv.org/pdf/2309.16941v1.pdf
🔥 Tasks: https://paperswithcode.com/task/benchmarking
@Machine_learn
🖥 Github: https://github.com/zhaoyu-li/g4satbench
📕 Paper: https://arxiv.org/pdf/2309.16941v1.pdf
🔥 Tasks: https://paperswithcode.com/task/benchmarking
@Machine_learn