🎲 Anti-Exploration by Random Network Distillation, Tinkoff Research, ICML 2023
We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.
🖥 Github: https://github.com/tinkoff-ai/sac-rnd
🤓 Paper: https://proceedings.mlr.press/v202/nikulin23a.html
@Machine_learn
We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.
🖥 Github: https://github.com/tinkoff-ai/sac-rnd
🤓 Paper: https://proceedings.mlr.press/v202/nikulin23a.html
@Machine_learn
👍1
MLBasicsBook.pdf
3.3 MB
Book: Machine Learning: The Basics
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
🔥4👍2❤1
🚀 AgentBench: Evaluating LLMs as Agents.
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
🖥 Github: https://github.com/thudm/agentbench
📕 Paper: https://arxiv.org/abs/2308.03688v1
☑️ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
🖥 Github: https://github.com/thudm/agentbench
📕 Paper: https://arxiv.org/abs/2308.03688v1
☑️ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
Enthought-v1.0.2.pdf
2.4 MB
Plotting with Pandas series
@Machine_learn
@Machine_learn
✅ SSLRec: A Self-Supervised Learning Library for Recommendation
SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.
🖥 Github: https://github.com/hkuds/sslrec
📕 Paper: https://arxiv.org/abs/2308.05697v1
⛓ Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
☑️ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
ai_machinelearning_big_data
SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.
🖥 Github: https://github.com/hkuds/sslrec
📕 Paper: https://arxiv.org/abs/2308.05697v1
⛓ Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
☑️ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
ai_machinelearning_big_data
👍3❤1
LightTBNet
🖥 Github: https://github.com/dani-capellan/LightTBNet
📕 Paper: https://arxiv.org/pdf/2309.02140v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/montgomery-county-x-ray-set
@Machine_learn
🖥 Github: https://github.com/dani-capellan/LightTBNet
📕 Paper: https://arxiv.org/pdf/2309.02140v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/montgomery-county-x-ray-set
@Machine_learn
👍1
LLM_Fine_Tuning_Molecular_Properties
🖥 Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
📕 Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
🔥 Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
🖥 Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
📕 Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
🔥 Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
❤1👍1
🚀 Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
🖥 Github: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO
📕 Paper: https://arxiv.org/abs/2309.11331v2
⏩ Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
🖥 Github: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO
📕 Paper: https://arxiv.org/abs/2309.11331v2
⏩ Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
InstructionERC
🖥 Github: https://github.com/LIN-SHANG/InstructERC
📕 Paper: https://arxiv.org/pdf/2309.11911v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
🖥 Github: https://github.com/LIN-SHANG/InstructERC
📕 Paper: https://arxiv.org/pdf/2309.11911v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
❤1
Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://t.me/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://t.me/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://t.me/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://t.me/DataScienceM
👍7❤1
🗣 Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition
🖥 Github: https://github.com/wenet-e2e/wespeaker
📕 Paper: https://arxiv.org/abs/2309.11730v1
⏩ Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
⭐️ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
pip3 install wespeakerruntime
🖥 Github: https://github.com/wenet-e2e/wespeaker
📕 Paper: https://arxiv.org/abs/2309.11730v1
⏩ Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
⭐️ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
🎓 BayesDLL: Bayesian Deep Learning Library
New Bayesian neural network library for PyTorch for large-scale deep network
🖥 Github: https://github.com/samsunglabs/bayesdll
📕 Paper: https://arxiv.org/abs/2309.12928v1
⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
New Bayesian neural network library for PyTorch for large-scale deep network
🖥 Github: https://github.com/samsunglabs/bayesdll
📕 Paper: https://arxiv.org/abs/2309.12928v1
⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
👍4❤3
Artificial Intelligence Class 10 (2023).pdf
20.8 MB
Book: ARTIFICIAL INTELLIGENCE (SUBJECT CODE 417) CLASS – 3
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
👍8🔥1
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
🖥 Github: https://github.com/dvlab-research/longlora
📕 Paper: https://arxiv.org/pdf/2309.12307v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
🖥 Github: https://github.com/dvlab-research/longlora
📕 Paper: https://arxiv.org/pdf/2309.12307v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
👍1
➕ fastMONAI: A low-code deep learning library for medical image analysis
Simplifying deep learning for medical imaging.
🖥 Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
📕 Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
🖥 Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
Simplifying deep learning for medical imaging.
git clone https://github.com/MMIV-ML/fastMONAI
🖥 Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
📕 Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
🖥 Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
👍4
30574277.pdf
20.5 MB
Book: Quantum Mechanics and
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Privacy-preserving in-context learning with differentially private few-shot generation
🖥 Github: https://github.com/microsoft/dp-few-shot-generation
📕 Paper: https://arxiv.org/pdf/2309.11765v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
🖥 Github: https://github.com/microsoft/dp-few-shot-generation
📕 Paper: https://arxiv.org/pdf/2309.11765v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
👍1
Developing Apps With GPT-4 and ChatGPT (2023).pdf
3 MB
Book: Developing Apps with GPT-4 and
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
✏️ Deep Geometrized Cartoon Line Inbetweening
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
🖥 Github: https://github.com/lisiyao21/animeinbet
☑️ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
📕 Paper: https://arxiv.org/pdf/2309.16643v1.pdf
⭐️ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
🖥 Github: https://github.com/lisiyao21/animeinbet
☑️ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
📕 Paper: https://arxiv.org/pdf/2309.16643v1.pdf
⭐️ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
👍4
Oreilly.Generative.Deep.Learning.pdf
57.9 MB
Book: Generative Deep Learning
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
❤5