Machine learning books and papers
22.6K subscribers
969 photos
54 videos
928 files
1.31K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.me/Machine_learn
Download Telegram
LLM-Pruner: On the Structural Pruning of Large Language Models

Compress your LLMs to any size;


🖥 Github: https://github.com/horseee/llm-pruner

Paper: https://arxiv.org/abs/2305.11627v1

📌 Dataset: https://paperswithcode.com/dataset/piqa

@Machine_learn
👍4
QLoRA: Efficient Finetuning of Quantized LLMs

Model name Guanaco, outperforms all previous openly released models on the Vicuna benchmark, reaching 99.3% of the performance level of ChatGPT while only requiring 24 hours of finetuning on a single GPU.


🖥 Github: https://github.com/artidoro/qlora

Paper: https://arxiv.org/abs/2305.14314

⭐️ Demo: https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi

📌 Dataset: https://paperswithcode.com/dataset/ffhq

@Machine_learn
👍3
Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

Hiera is a hierarchical vision transformer that is fast, powerful, and, above all, simple. It outperforms the state-of-the-art across a wide array of image and video tasks while being much faster.

pip install hiera-transformer

🖥 Github: https://github.com/facebookresearch/hiera

Paper: https://arxiv.org/abs/2306.00989v1

📌 Dataset: https://paperswithcode.com/dataset/inaturalist

@Machine_learn
👍4
25_Awesome_Python_Scripts.pdf
171.4 KB
A Collection of 25 Awesome Python Scripts (mini projects)
#Python #Mini_Projects
@Machine_learn
👍5
با عرض سلام پکیچ های یادگیری ماشین و یادگیری عمیق رو برای دوستانی که نیاز دارن تخفیف۵۰٪ گذاشتیم در صورت نیاز به بنده اطلاع بدین.
@Raminmousa
🔥2👍1
🦍 Gorilla: Large Language Model Connected with Massive APIs

Gorilla a finetuned LLaMA-based model that surpasses the performance of GPT-4 on writing API calls.


🖥 Github: https://github.com/ShishirPatil/gorilla

📕 Paper: https://arxiv.org/abs/2305.15334

🔗 Demo: https://drive.google.com/file/d/1E0k5mG1mTiaz0kukyK1PdeohJipTFh6j/view?usp=share_link

👉 Project: https://shishirpatil.github.io/gorilla/

⭐️ Colab: https://colab.research.google.com/drive/1DEBPsccVLF_aUnmD0FwPeHFrtdC0QIUP?usp=sharing

@Machine_learn
👍5
Segment Anything 3D

SAM-3D: A toolbox transfers 2D SAM segments into 3D scene-level point clouds.

🖥 Github: https://github.com/pointcept/segmentanything3d

Paper: https://arxiv.org/abs/2306.03908v1

📌 Dataset: https://paperswithcode.com/dataset/scannet
@Machine_learn
👍2
python-regular-expressions-cheat-sheet.pdf
49 KB
Data Science Cheat Sheet
Python Regular Expressions

#Python
#RE
@Machine_learn
👍8
Data Science Interview (en).pdf
849.5 KB
Book: DATA SCIENCE INTERVIEW
GUIDE ACE-PREP
Authors: null
ISBN: 978-1-915002-10-5
year: 2022
pages: 136
Tags: #Data_Science
@Machine_learn
👍9
Semi-supervised learning made simple with self-supervised clustering [CVPR 2023]

🖥 Github: https://github.com/pietroastolfi/suave-daino

Paper: https://arxiv.org/pdf/2306.07483v1.pdf

💨 Dataset: https://paperswithcode.com/dataset/imagenet

@Machine_learn
👍51🔥1
🐼 PandaLM: ReProducible and Automated Language Model Assessment

Judge large language model, named PandaLM, which is trained to distinguish the superior model given several LLMs. PandaLM's focus extends beyond just the objective correctness of responses, which is the main focus of traditional evaluation datasets.

🖥 Github: https://github.com/weopenml/pandalm

📕 Paper: https://arxiv.org/abs/2306.05087v1

🔗 Dataset: https://github.com/tatsu-lab/stanford_alpaca#data-release

@Machine_learn
4👍1🔥1
LabelBench: A Comprehensive Framework for Benchmarking Label-Efficient Learning

🖥 Github: https://github.com/efficienttraining/labelbench

Paper: https://arxiv.org/pdf/2306.09910v1.pdf

💨 Dataset: https://paperswithcode.com/dataset/cifar-10

@Machine_learn
👍21
30 deep learning projects-2.pdf
51.4 KB
30 Deep Learning Projects
With Datasets Details
@Machine_learn
👍96
🚶‍♂️ MotionGPT: Human Motion
as Foreign Language


MotionGPT consists of a motion tokenizer responsible for converting raw motion data into discrete motion tokens, as well as a motion-aware language model that learns to understand the motion tokens from large language pre-training models by corresponding textual descriptions.


Project: https://motion-gpt.github.io/

🖥 Github: https://github.com/openmotionlab/motiongpt

📕 Paper: https://arxiv.org/pdf/2306.14795.pdf

🔗Dataset: https://paperswithcode.com/dataset/amass

@Machine_learn
👍41
E‏yes estimation and tracking are important research issues in computer vision and human-computer interaction. In this paper, a transfer-based learning model is proposed for this purpose. In the proposed approach, the two ResNet50 networks, whose initial weights are taken from ImageNet, are taught in parallel and finally merged into a layer called feature fusion, the output of the two networks. The proposed approach results show that this approach is better than other approaches on the MPIIGaze dataset. The proposed approach achieved an angle error of 5.83, which resulted in a lower error than other approaches.

با عرض سلام مقاله ی فوق جهت قرار گیری در ارکایو اماده می باشد دوستانی که تمایل به شرکت دارند می تونن به ایدی بنده پیام بدن. جایگاه ۲ و ۳ خالی میباشد.
@Raminmousa
6👍3
Forwarded from Eng. Hussein Sheikho 👨‍💻
This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning

https://t.me/DataScienceM
https://t.me/DataScienceM
🔥4👍2