Machine learning books and papers
22.8K subscribers
975 photos
54 videos
928 files
1.32K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.me/Machine_learn
Download Telegram
πŸ’¬ GLIGEN: Open-Set Grounded Text-to-Image Generation

GLIGEN’s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.


⭐️ Project: https://gligen.github.io/

⭐️ Demo: https://aka.ms/gligen

βœ…οΈ Paper: https://arxiv.org/abs/2301.07093

πŸ–₯ Github: https://github.com/gligen/GLIGEN

@Machine_learn
Apress.PyTorch.pdf
5.1 MB
PyTorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models, 2nd Edition (2022)
#Pythorch #book #python

@Machin_learn
πŸ”₯1
This media is not supported in your browser
VIEW IN TELEGRAM
AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling

Autoregressive approach for modeling dynamically deforming human bodies by Meta.


πŸ–₯ Github: github.com/facebookresearch/AutoAvatar

⭐️ Project: zqbai-jeremy.github.io/autoavatar

βœ…οΈ Paprer: arxiv.org/pdf/2203.13817.pdf

⏩ Dataset: https://amass.is.tue.mpg.de/index.html

⭐️ Video: https://zqbai-jeremy.github.io/autoavatar/static/images/video_arxiv.mp4

@Machine_learn
πŸ‘4❀1
πŸ–₯ Deep BCI SW ver. 1.0 is released.

πŸ–₯ Github: https://github.com/DeepBCI/Deep-BCI

⏩ Paper: https://arxiv.org/abs/2301.08448v1

➑️ Project: http://deepbci.korea.ac.kr/

@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
βœ…οΈ StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis




πŸ–₯ Github: github.com/autonomousvision/stylegan-t

βœ…οΈ Paper: arxiv.org/pdf/2301.09515.pdf

⭐️ Project: sites.google.com/view/stylegan-t

βœ”οΈ Video: https://www.youtube.com/watch?v=MMj8OTOUIok&embeds_euri=https%3A%2F%2Fsites.google.com%2F&feature=emb_logo

πŸ–₯ Projected GAN: https://github.com/autonomousvision/projected-gan

@Machine_learn
πŸ”₯3πŸ‘1
Pandas.Basics.pdf
9.8 MB
Pandas Basics
Oswald Campesato
#book #pandas #python
@Machne_learn
❀7
PACO: Parts and Attributes of Common Objects

πŸ–₯ Github
⭐️ Paper
➑️Project

@Machine_learn
❀2πŸ‘2
❔ PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development



πŸ–₯ Github: https://github.com/primeqa/primeqa

πŸ–₯ Notebooks: https://github.com/primeqa/primeqa/tree/main/notebooks

βœ…οΈ Paper: https://arxiv.org/abs/2301.09715v2

⭐️ Dataset: https://paperswithcode.com/dataset/wikitablequestions

βœ”οΈ Docs: https://primeqa.github.io/primeqa/installation.html

@Machine_learn
πŸ‘1πŸ”₯1
πŸ‘7❀1
2301.11696.pdf
871.9 KB
SLCNN: Sentence-Level Convolutional Neural Network for Text Classification

Ali Jarrahi, Leila Safari , Ramin Mousa

abstract: Text classification is a fundamental task in natural language processing (NLP). Several recent studies show the success of deep learning on text processing. Convolutional neural network (CNN), as a popular deep learning model, has shown remarkable success in the task of text classification. In this paper, new baseline models have been studied for text classification using CNN. In these models, documents are fed to the network as a three-dimensional tensor representation to provide sentence-level analysis. Applying such a method enables the models to take advantage of the positional information of the sentences in the text. Besides, analysing adjacent sentences allows extracting additional features. The proposed models have been compared with the state-of-the-art models using several datasets.
Author: @Raminmousa

@Machine_learn
πŸ‘6
Ψ₯ΩΩ†ΩŽΩ‘Ψ§ Ω„ΩΩ„ΩŽΩ‘Ω°Ω‡Ω وَΨ₯ΩΩ†ΩŽΩ‘Ψ§ Ψ₯ΩΩ„ΩŽΩŠΩ’Ω‡Ω Ψ±ΩŽΨ§Ψ¬ΩΨΉΩΩˆΩ†ΩŽ
πŸ–€
@Machine_learn
πŸ’”44🀯3πŸ”₯1
STEPS: Joint Self-supervised Nighttime Image Enhancement and Depth Estimation (ICRA 2023)

πŸ–₯ Github: https://github.com/ucaszyp/steps

⏩ Paper: https://arxiv.org/abs/2302.01334v1

➑️ Dataset: https://paperswithcode.com/dataset/nuscenes

@Machine_learn
😍1
This media is not supported in your browser
VIEW IN TELEGRAM
Chinese doors
@Machine_learn
😁7πŸ‘1🀯1
OReilly.Fundamentals.of.Deep.Learning.pdf
15.9 MB
Fundamentals of Deep Learning
Designing Next-Generation Machine Intelligence Algorithms
#Book #DL
@Machine_learn
❀4πŸ‘4
Internet_of_Things_Security_Architectures_and_Security_Measures.pdf
4.8 MB
Internet of Things Security Architectures and Security Measures
#Book #iot
@Machine_learn
πŸ‘4
Paper_artworks_2 [Autosaved] - Version final_2 3.pptx
3.3 MB
AI powered Traffic Flow Characterization, Monitoring and Prediction
Ramin Mousa
#Slide
@Machine_learn
πŸ‘5