Machine learning books and papers
23.1K subscribers
980 photos
54 videos
929 files
1.32K links
Download Telegram
Advanced Data Analytics Using Python.pdf
2.2 MB
Advanced Data Analytics Using Python
With Machine Learning, Deep Learning and NLP Examples
#book #Ml
@Machine_learn
Deep_RL.pdf
3.4 MB
Deep Reinforcement Learning
CS 285, University of California, Berkeley
Harry Zhang December 2019
#book
@Machine_learn
⭐️ Traffic4cast 2022 Competition: from few public vehicle counters to entire city-wide traffic

🖥 Github: https://github.com/iarai/neurips2022-traffic4cast

🗒 Paper: https://arxiv.org/abs/2211.09984v1

➡️ Dataset: https://developer.here.com/sample-data

@Machine_learn
➡️ AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time

🖥 Github: https://github.com/MVIG-SJTU/AlphaPose

📝 Colab: https://colab.research.google.com/drive/1c7xb_7U61HmeJp55xjXs24hf1GUtHmPs?usp=sharing

🗒 Paper: https://arxiv.org/abs/2211.03375v1

➡️ Dataset: https://paperswithcode.com/dataset/hico-det

@Machine_learn
1
🚀 Stable Diffusion web UI

UI на основе библиотеки Gradio для Stable Diffusion. Большое количество фич для генерации контента с удобным интерфейсом.

🖥 Github: https://github.com/AUTOMATIC1111/stable-diffusion-webui

Scripts: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts

⭐️ Features: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features

@Machine_learn
1
🚀 DiffusionDet: Diffusion Model for Object Detection

DiffusionDet — первая диффузионная модель для обнаружения объектов.

🖥 Github: https://github.com/shoufachen/diffusiondet

➡️ Paper: https://arxiv.org/abs/2211.09788v1

🗒 Getting Started: https://github.com/ShoufaChen/DiffusionDet/blob/main/GETTING_STARTED.md

🖥 Dataset: https://paperswithcode.com/dataset/imagenet

@Machine_learn
با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)

جهت تهیه می تونین به ایدی بنده مراجعه کنین

@Raminmousa
👍1
Machine learning books and papers pinned «با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد 1: introduction to machine learning 2: Regression (linear and non-linear) 3: Tensorflow…»
keras.pdf
553.3 KB
Deep Learning with Keras : : CHEAT SHEET
#Cheat_sheet #keras
@Machine_learn
2