Machine learning books and papers
23.3K subscribers
986 photos
55 videos
929 files
1.33K links
Download Telegram
Ted Talk with Yann LeCun

in which Yann discusses his current research into self-supervised machine learning, how he's trying to build machines that learn with common sense (like humans) and his hopes for the next conceptual breakthrough in AI.

โ–ถ๏ธ Watch

@Machine_learn
PlenOctrees For Real-time Rendering of Neural Radiance Fields

And yet another speed-up of NERF. Exactly the same idea as in FastNeRF and NEX (predict spherical harmonics coefficients k) - incredible! It's the first time I see so many concurrent papers sharig the same idea. But this one has code at least, which makes it the best!

๐Ÿ“ Paper arxiv.org/abs/2103.14024
๐ŸŒProject page alexyu.net/plenoctrees/
๐Ÿ› Code github.com/sxyu/volrend


@Machine_learn
โ€‹โ€‹EfficientNetV2: Smaller Models and Faster Training

A new paper from Google Brain with a new SOTA architecture called EfficientNetV2. The authors develop a new family of CNN models that are optimized both for accuracy and training speed. The main improvements are:

- an improved training-aware neural architecture search with new building blocks and ideas to jointly optimize training speed and parameter efficiency;
- a new approach to progressive learning that adjusts regularization along with the image size;

As a result, the new approach can reach SOTA results while training faster (up to 11x) and smaller (up to 6.8x).

Paper: https://arxiv.org/abs/2104.00298

Code will be available here:
https://github.com/google/automl/efficientnetv2

A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-effnetv2

@Machine_learn
500 + ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—Ÿ๐—ถ๐˜€๐˜ ๐˜„๐—ถ๐˜๐—ต ๐—ฐ๐—ผ๐—ฑ๐—ฒ

500
AI Machine learning Deep learning Computer vision NLP Projects with code

This list is continuously updated. - You can take pull request and contribute.

https://github.com/ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code

@Machine_learn
document.pdf
670.5 KB
How Machine Learning is Changing e-Government @Machine_learn
ุจุง ุนุฑุถ ุณู„ุงู… ู…ุง ูพูƒูŠุฌ ูฃูฆ ูพุฑูˆฺ˜ู‡ ุนู…ู„ูŠ ุจุง ูŠุงุฏฺฏูŠุฑูŠ ุนู…ูŠู‚ ู‡ู…ุฑุงู‡ ุจุง ุฏุงูƒูŠูˆู…ู†ุช ูุงุฑุณูŠ ุฑุง ุจุฑุงูŠ ุฏูˆุณุชุงู†ูŠ ูƒู‡ ู…ูŠ ุฎูˆุงู‡ู†ุฏ ุฏุฑ ุงูŠู† ุญูˆุฒู‡ ุจู‡ ุตูˆุฑุช ุนู…ู„ูŠ ูƒุงุฑ ูƒู†ู†ุฏ ุชู‡ูŠู‡ ูƒุฑุฏูŠู… ุณุฑูุตู„ ู‡ุงูŠ ุงูŠู† ูพูƒูŠุฌ ุจู‡ ุชุฑุชูŠุจ ุฒูŠุฑ ู…ูŠ ุจุงุดู†ุฏ:


1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
ู‡ุฒูŠู†ู‡ ุงูŠู† ูพูƒูŠุฌ ูฅู ู ู‡ุฒุงุฑ ู…ูŠ ุจุงุดุฏ ูˆ ุตุฑูุง ู‡ุฒูŠู†ู‡ ุชู‡ูŠู‡ ุฏูŠุชุงุณุช ู‡ุงุณุช.
ุฌู‡ุช ุฎุฑูŠุฏ ู…ูŠ ุชูˆุงู†ูŠุฏ ุจุง ุงูŠุฏูŠ ุจู†ุฏู‡ ุฏุฑ ุงุฑุชุจุงุท ุจุงุดูŠุฏ
@Raminmousa
Machine learning books and papers pinned ยซุจุง ุนุฑุถ ุณู„ุงู… ู…ุง ูพูƒูŠุฌ ูฃูฆ ูพุฑูˆฺ˜ู‡ ุนู…ู„ูŠ ุจุง ูŠุงุฏฺฏูŠุฑูŠ ุนู…ูŠู‚ ู‡ู…ุฑุงู‡ ุจุง ุฏุงูƒูŠูˆู…ู†ุช ูุงุฑุณูŠ ุฑุง ุจุฑุงูŠ ุฏูˆุณุชุงู†ูŠ ูƒู‡ ู…ูŠ ุฎูˆุงู‡ู†ุฏ ุฏุฑ ุงูŠู† ุญูˆุฒู‡ ุจู‡ ุตูˆุฑุช ุนู…ู„ูŠ ูƒุงุฑ ูƒู†ู†ุฏ ุชู‡ูŠู‡ ูƒุฑุฏูŠู… ุณุฑูุตู„ ู‡ุงูŠ ุงูŠู† ูพูƒูŠุฌ ุจู‡ ุชุฑุชูŠุจ ุฒูŠุฑ ู…ูŠ ุจุงุดู†ุฏ: 1-Deep Learning Basic -01_Introduction --01_How_TensorFlow_Worksโ€ฆยป