Machine learning books and papers
22.6K subscribers
971 photos
54 videos
928 files
1.31K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.me/Machine_learn
Download Telegram
@Machine_learn

More than 200 NLP datasets - this is gold (last update 21.01.202)

https://quantumstat.com/dataset/dataset.html

and also Google provided dataset search tool for publicly available datasets:

https://datasetsearch.research.google.com/
سلام دوستان برای یه کار تحقیق نیاز به یسری دیتاست در زمینه تحلیل احساس فارسی داریم (به غیر از توییتر) ممنون میشم اگر کسی داره در پیوی برای بنده به اشتراک بزاره

@raminmousa
Machine learning books and papers pinned «سلام دوستان برای یه کار تحقیق نیاز به یسری دیتاست در زمینه تحلیل احساس فارسی داریم (به غیر از توییتر) ممنون میشم اگر کسی داره در پیوی برای بنده به اشتراک بزاره @raminmousa»
2002.07112.pdf
1 MB
Artificial Intelligence Forecasting of Covid-19 in China
#paper
#Corona_virus
@Machine_learn
Announcing TensorFlow Quantum: An Open Source Library for Quantum Machine Learning

@Machine_learn


https://ai.googleblog.com/2020/03/announcing-tensorflow-quantum-open.html
1.Generative Adversarial Networks with python by Jason Brownlee
2.imbalanced classification with python by Jason Brownlee

I want these two books

@Raminmousa
Generative Adversarial Networks with Python.zip
9.5 MB
Generative Adversarial Networks with python by Jason Brownlee #book and #code @Machine_learn
@machine_learn
A Survey on The Expressive Power of Graph Neural Networks

This is the best survey on the theory on GNNs I'm aware of. It produces so many illustrative examples on what GNN can and cannot distinguish.

It's funny, it's made by Ryoma Sato who I already saw from other works on GNNs and I thought it's one of these old Japanese professors with long beard and strict habits, but it turned out to be a 1st year MSc student 🇯🇵
1
Jason Brownlee
Machine Learning Mastery With Python
#book #python
@Machine_learn
"Deep learning for Computer Vision by Jason brownlee"

Please share it with me
@raminmousa
https://machinelearningmastery.com/deep-learning-for-computer-vision/
​​
@Machine_learn
MaxUp: A Simple Way to Improve Generalization of Neural Network Training

A new approach to augmentation both images and text. The idea is to generate a set of augmented data with some random perturbations or transforms and minimize the maximum, or worst case loss over the augmented data. By doing so, the authors implicitly introduce a smoothness or robustness regularization against the random perturbations, and hence improve the generation performance. Testing MaxUp on a range of tasks, including image classification, language modeling, and adversarial certification, it is consistently outperforming the existing best baseline methods, without introducing substantial computational overhead.
.
.
.

paper: https://arxiv.org/abs/2002.09024

#augmentations #SOTA #ml