Machine learning books and papers
23.6K subscribers
990 photos
55 videos
929 files
1.33K links
Download Telegram
document.pdf
670.5 KB
How Machine Learning is Changing e-Government @Machine_learn
ุจุง ุนุฑุถ ุณู„ุงู… ู…ุง ูพูƒูŠุฌ ูฃูฆ ูพุฑูˆฺ˜ู‡ ุนู…ู„ูŠ ุจุง ูŠุงุฏฺฏูŠุฑูŠ ุนู…ูŠู‚ ู‡ู…ุฑุงู‡ ุจุง ุฏุงูƒูŠูˆู…ู†ุช ูุงุฑุณูŠ ุฑุง ุจุฑุงูŠ ุฏูˆุณุชุงู†ูŠ ูƒู‡ ู…ูŠ ุฎูˆุงู‡ู†ุฏ ุฏุฑ ุงูŠู† ุญูˆุฒู‡ ุจู‡ ุตูˆุฑุช ุนู…ู„ูŠ ูƒุงุฑ ูƒู†ู†ุฏ ุชู‡ูŠู‡ ูƒุฑุฏูŠู… ุณุฑูุตู„ ู‡ุงูŠ ุงูŠู† ูพูƒูŠุฌ ุจู‡ ุชุฑุชูŠุจ ุฒูŠุฑ ู…ูŠ ุจุงุดู†ุฏ:


1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
ู‡ุฒูŠู†ู‡ ุงูŠู† ูพูƒูŠุฌ ูฅู ู ู‡ุฒุงุฑ ู…ูŠ ุจุงุดุฏ ูˆ ุตุฑูุง ู‡ุฒูŠู†ู‡ ุชู‡ูŠู‡ ุฏูŠุชุงุณุช ู‡ุงุณุช.
ุฌู‡ุช ุฎุฑูŠุฏ ู…ูŠ ุชูˆุงู†ูŠุฏ ุจุง ุงูŠุฏูŠ ุจู†ุฏู‡ ุฏุฑ ุงุฑุชุจุงุท ุจุงุดูŠุฏ
@Raminmousa
Machine learning books and papers pinned ยซุจุง ุนุฑุถ ุณู„ุงู… ู…ุง ูพูƒูŠุฌ ูฃูฆ ูพุฑูˆฺ˜ู‡ ุนู…ู„ูŠ ุจุง ูŠุงุฏฺฏูŠุฑูŠ ุนู…ูŠู‚ ู‡ู…ุฑุงู‡ ุจุง ุฏุงูƒูŠูˆู…ู†ุช ูุงุฑุณูŠ ุฑุง ุจุฑุงูŠ ุฏูˆุณุชุงู†ูŠ ูƒู‡ ู…ูŠ ุฎูˆุงู‡ู†ุฏ ุฏุฑ ุงูŠู† ุญูˆุฒู‡ ุจู‡ ุตูˆุฑุช ุนู…ู„ูŠ ูƒุงุฑ ูƒู†ู†ุฏ ุชู‡ูŠู‡ ูƒุฑุฏูŠู… ุณุฑูุตู„ ู‡ุงูŠ ุงูŠู† ูพูƒูŠุฌ ุจู‡ ุชุฑุชูŠุจ ุฒูŠุฑ ู…ูŠ ุจุงุดู†ุฏ: 1-Deep Learning Basic -01_Introduction --01_How_TensorFlow_Worksโ€ฆยป
A Survey of Data Augmentation Approaches for NLP

Data Augmentation has becoming more and more popular and important task in NLP. On the contrary to Computer Vision where all methods now are well-known and already pre-implemented in libraries, in NLP the situation is not so consistent.

So, there has been published a nice paper that accumulated all known due today techniques, models and applications of data augmentation in texts:
https://arxiv.org/abs/2105.03075

In the appendix you can find the list of open-source that may be useful for your task.
@Machine_learn
500 + ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—Ÿ๐—ถ๐˜€๐˜ ๐˜„๐—ถ๐˜๐—ต ๐—ฐ๐—ผ๐—ฑ๐—ฒ

https://github.com/ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code

@Machine_learn
๐Ÿ‘1
Topic : Sudoku solver (SolSudo)

Abstract : SolSudo is a Sudoku solver made using Deep Learning. SolSudo can solve sudokus using images. This has an intelligent solution method. According to this method, the model predicts the blank digits, and when each level is completed, the filled blanks are placed one after another. Each time a digit is filled, new sudoku will be fed to the solver to determine the next digit. Again and again, until there is no blank left. One of the features of this project is detecting sudoku from an image and filling in the blanks. This requires tesseract-ocr, however, which may cause problems. Therefore, I devised a method, in which the Sudoku numbers are entered one by one, and 0 is used for the empty spaces. Below is an example of Sudoku, its detection, and its solution.

Github Link : https://github.com/AryaKoureshi/SolSudo
Linkedin Link : https://www.linkedin.com/posts/arya-koureshi_deeplearning-python-tensorflow-activity-6711641409658716160-kdSD

@Machine_learn
Cicolani2021_Book_BeginningRoboticsWithRaspberry.pdf
7.3 MB
Beginning Robotics with Raspberry Pi and Arduino #2021 #book @Machine_learn