Computer Science and Programming
15.2K subscribers
102 photos
15 videos
24 files
219 links
Channel for who have a passion for -
* Artificial Intelligence
* Machine Learning
* Deep Learning
* Data Science
* Computer vision
* Image Processing
* Research Papers
* Related Courses and Ebooks

With advertising offers contact: @ai_adminn
Download Telegram
๐Ÿ‘‹ Welcome to @realgroupforprogrammer ๐Ÿ‘‹

๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด ๐Ÿ‘จโ€๐Ÿ’ป
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—˜๐˜๐—ต๐—ถ๐—ฐ๐—ฎ๐—น ๐—›๐—ฎ๐—ฐ๐—ธ๐—ถ๐—ป๐—ด ๐Ÿš€
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—•๐—น๐—ฎ๐—ฐ๐—ธ๐—›๐—ฎ๐˜ ๐— ๐—ฒ๐˜๐—ต๐—ผ๐—ฑ๐˜€ ๐Ÿ’™
๐—”๐—ป๐—ฑ ๐—บ๐˜‚๐—ฐ๐—ต ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—น๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—ฐ๐—ฎ๐—น ๐—บ๐—ฒ๐˜๐—ต๐—ผ๐—ฑ๐˜€, ๐˜๐—ถ๐—ฝ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐˜๐—ฟ๐—ถ๐—ฐ๐—ธ๐˜€.

๐Ÿ’ป ๐—›๐—ฒ๐—ฟ๐—ฒ ๐˜†๐—ผ๐˜‚ ๐—ฐ๐—ฎ๐—ป ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป :- ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด, ๐—›๐—ฎ๐—ฐ๐—ธ๐—ถ๐—ป๐—ด, ๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ๐—ถ๐—ป๐—ด, ๐—ช๐—ฒ๐—ฏ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜, ๐—”๐—ฝ๐—ฝ ๐—ฑ๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜, ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด, ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ, ๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด, ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ, ๐——๐—ถ๐—ด๐—ถ๐˜๐—ฎ๐—น ๐— ๐—ฎ๐—ฟ๐—ธ๐—ฒ๐˜๐—ถ๐—ป๐—ด, ๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต๐—ถ๐—ฐ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป, ๐—”๐—ป๐—ถ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป, ๐—ฉ๐—ถ๐—ฑ๐—ฒ๐—ผ ๐—ฒ๐—ฑ๐—ถ๐˜๐—ถ๐—ป๐—ด, ๐—ฃ๐—ต๐—ผ๐˜๐—ผ๐—ด๐—ฟ๐—ฎ๐—ฝ๐—ต๐˜†, ๐—ฃ๐—ต๐—ผ๐˜๐—ผ๐˜€ ๐—ฒ๐—ฑ๐—ถ๐˜๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—บ๐—ฎ๐—ป๐˜† ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—น๐—ผ๐˜๐˜€ ๐—ผ๐—ณ ๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐Ÿ“š๐Ÿ…๐ŸŽ–

โœ… ๐—” ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ป ๐—น๐—ถ๐—ฏ๐—ฟ๐—ฎ๐—ฟ๐˜† ๐—ณ๐—ผ๐—ฟ ๐—ด๐—ฒ๐—ฒ๐—ธ๐˜€.

๐—š๐—ฒ๐˜ ๐—•๐˜‚๐—ด ๐—•๐—ผ๐˜‚๐—ป๐˜๐˜†, ๐—ก๐—ฒ๐˜๐˜„๐—ผ๐—ฟ๐—ธ๐—ถ๐—ป๐—ด, ๐—˜๐˜๐—ต๐—ถ๐—ฐ๐—ฎ๐—น ๐—›๐—ฎ๐—ฐ๐—ธ๐—ถ๐—ป๐—ด, ๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ๐˜€๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†, ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด & ๐—น๐—ผ๐˜ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—น๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐˜† ๐—ฏ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐—ฒ๐—•๐—ผ๐—ผ๐—ธ๐˜€.

๐—œ๐—ป ๐˜๐—ต๐—ถ๐˜€ ๐—–๐—ต๐—ฎ๐—ป๐—ป๐—ฒ๐—น, ๐—ฌ๐—ผ๐˜‚ ๐˜„๐—ถ๐—น๐—น ๐—ด๐—ฒ๐˜ ๐—จ๐—ฑ๐—ฒ๐—บ๐˜† ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€, ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐—ฟ๐—ฎ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€, & ๐—™๐—ฟ๐—ฒ๐—ฒ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€.

๐™๐™ค๐™ง ๐™›๐™ง๐™š๐™š ๐™˜๐™ค๐™ช๐™ง๐™จ๐™š๐™จ,๐™—๐™ค๐™ค๐™ ๐™จ,๐™ฅ๐™ง๐™ค๐™Ÿ๐™š๐™˜๐™ฉ๐™จ,๐™ž๐™ฃ๐™ฉ๐™š๐™ง๐™ฃ๐™จ๐™๐™ž๐™ฅ๐™จ,๐™ฅ๐™ก๐™–๐™˜๐™š๐™ข๐™š๐™ฃ๐™ฉ๐™จ ๐™–๐™ฃ๐™™ ๐™Ÿ๐™ค๐™—๐™จ ๐™ง๐™š๐™ก๐™–๐™ฉ๐™š๐™™ ๐™ข๐™–๐™ฉ๐™š๐™ง๐™ž๐™–๐™ก ๐™–๐™ฃ๐™™ ๐™ช๐™ฅ๐™™๐™–๐™ฉ๐™š๐™จ ๐™Ÿ๐™ค๐™ž๐™ฃ ๐™ค๐™ช๐™ง ๐™ฉ๐™š๐™ก๐™š๐™œ๐™ง๐™–๐™ข ๐™˜๐™๐™–๐™ฃ๐™ฃ๐™š๐™ก:

https://telegram.me/realgroupforprogrammer

๐—ฆ๐—ผ ๐˜„๐—ต๐—ฎ๐˜ ๐—ฎ๐—ฟ๐—ฒ ๐˜†๐—ผ๐˜‚ ๐˜„๐—ฎ๐—ถ๐˜๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ?
๐—๐—ผ๐—ถ๐—ป ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐—ป๐—ผ๐˜„๐Ÿ‘

https://telegram.me/realgroupforprogrammer
Computer Science and Programming pinned ยซArtificial Intelligence && Deep Learning Channel for who have a passion for - * Artificial Intelligence * Machine Learning * Deep Learning * Data Science * Computer vision * Image Processing * Research Papers With advertising offers contact: @Muhammadyahyooโ€ฆยป
Dive into Deep Learning

Interactive deep learning book with code, math, and discussions

Implemented with NumPy/MXNet, PyTorch, and TensorFlow

Adopted at 300 universities from 55 countries

@MachineLearning_Programming
An important collection of the 15 best machine learning cheat sheets.

1- Supervised Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf

2- Unsupervised Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf

3- Deep Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf

4- Machine Learning Tips and Tricks

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf

5- Probabilities and Statistics

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf

6- Comprehensive Stanford Master Cheat Sheet

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf

7- Linear Algebra and Calculus

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf

8- Data Science Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf

9- Keras Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf

10- Deep Learning with Keras Cheat Sheet

https://github.com/rstudio/cheatsheets/raw/master/keras.pdf

11- Visual Guide to Neural Network Infrastructures

http://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png

12- Skicit-Learn Python Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf

13- Scikit-learn Cheat Sheet: Choosing the Right Estimator

https://scikit-learn.org/stable/tutorial/machine_learning_map/

14- Tensorflow Cheat Sheet

https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf

15- Machine Learning Test Cheat Sheet

https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/

https://t.me/MachineLearning_Programming
โ€”โ€”โ€”โ€”โ€”โ€” ConvNeXt โ€”โ€”โ€”โ€”โ€”โ€”--


Facebook propose ConvNeXt, a pure ConvNet model constructed entirely from standard ConvNet modules. ConvNeXt is accurate, efficient, scalable and very simple in design.

Github: https://github.com/facebookresearch/ConvNeXt

Paper: https://arxiv.org/abs/2201.03545

invite your friends ๐ŸŒน๐ŸŒน
@MachineLearning_Programming
Want to jump ahead in artificial intelligence and/or digital pathology? Excited to share that after 2+ years of development PathML 2.0 is out! An open source #computational #pathology software library created by Dana-Farber Cancer Institute/Harvard Medical School and Weill Cornell Medicine led by Massimo Loda to lower the barrier to entry to #digitalpathology and #artificialintelligence , and streamline all #imageanalysis or #deeplearning workflows.

โญ Code: https://github.com/Dana-Farber-AIOS/pathml
This media is not supported in your browser
VIEW IN TELEGRAM
PyAutoGUI is a cross-platform GUI automation Python module for human beings. Used to programmatically control the mouse & keyboard.

https://github.com/YashIndane/Call-of-Duty-

invite your friends ๐ŸŒน๐ŸŒน
@Deeplearning_ai
This media is not supported in your browser
VIEW IN TELEGRAM
A lightweight vision library for performing large scale object detection & instance segmentation

Github: https://github.com/obss/sahi

Paper: https://arxiv.org/abs/2202.06934v1

Kaggle notebook: https://www.kaggle.com/remekkinas/sahi-slicing-aided-hyper-inference-yv5-and-yx

Dataset: https://paperswithcode.com/dataset/xview



invite your friends ๐ŸŒน๐ŸŒน
@Deeplearning_ai
Media is too big
VIEW IN TELEGRAM
Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021)

Project Page Paper Github


invite your friends ๐ŸŒน๐ŸŒน
@Deeplearning_ai
This media is not supported in your browser
VIEW IN TELEGRAM
๐Ÿ›ธUFO: segmentation @140+ FPS๐Ÿ›ธ

๐Ÿ‘‰Unified Transformer Framework for Co-Segmentation, Co-Saliency & Salient Object Detection. All in one!


๐‡๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โœ…Unified framework for co-segmentation
โœ…Co-segmentation, co-saliency, saliency
โœ…Block for long-range dependencies
โœ…Able to reach for 140 FPS in inference
โœ…The new SOTA on multiple datasets
โœ…Source code under MIT License


[PAPER] [Source Code]

invite your friends ๐ŸŒน๐ŸŒน
@Deeplearning_ai
If you are learning Machine Learning and wants to make end-to-end Machine Learning real-world projects, then this website can be a great resource for you.

It has project bundle(Dragon bundle) comprising more than 550+ real-world projects in ML, DL, DS, CV and NLP and PYTHON3.

More details are showned in the image above.

- Each project comes with required Dataset, complete source code(Python3) and documentation along with explanatory comments so that even beginner can understand.

- Life time access and projects are getting updates each month.

You can download the list of complete 550+ projects from our website.

Visit our website for more information.
Website Link:
https://tensorprojects.com/dragonbundle