๐ Welcome to @realgroupforprogrammer ๐
๐๐ฒ๐ฎ๐ฟ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐จโ๐ป
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐๐ต๐ถ๐ฐ๐ฎ๐น ๐๐ฎ๐ฐ๐ธ๐ถ๐ป๐ด ๐
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐น๐ฎ๐ฐ๐ธ๐๐ฎ๐ ๐ ๐ฒ๐๐ต๐ผ๐ฑ๐ ๐
๐๐ป๐ฑ ๐บ๐๐ฐ๐ต ๐บ๐ผ๐ฟ๐ฒ ๐น๐ฎ๐๐ฒ๐๐ ๐๐ฒ๐ฐ๐ต๐ป๐ถ๐ฐ๐ฎ๐น ๐บ๐ฒ๐๐ต๐ผ๐ฑ๐, ๐๐ถ๐ฝ๐ ๐ฎ๐ป๐ฑ ๐๐ฟ๐ถ๐ฐ๐ธ๐.
๐ป ๐๐ฒ๐ฟ๐ฒ ๐๐ผ๐ ๐ฐ๐ฎ๐ป ๐น๐ฒ๐ฎ๐ฟ๐ป :- ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด, ๐๐ฎ๐ฐ๐ธ๐ถ๐ป๐ด, ๐๐ฟ๐ฎ๐ฐ๐ธ๐ถ๐ป๐ด, ๐ช๐ฒ๐ฏ ๐ฑ๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐, ๐๐ฝ๐ฝ ๐ฑ๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐, ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด, ๐๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ถ๐ฎ๐น ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ฐ๐ฒ, ๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด, ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ, ๐๐ถ๐ด๐ถ๐๐ฎ๐น ๐ ๐ฎ๐ฟ๐ธ๐ฒ๐๐ถ๐ป๐ด, ๐๐ฟ๐ฎ๐ฝ๐ต๐ถ๐ฐ ๐ฑ๐ฒ๐๐ถ๐ด๐ป, ๐๐ป๐ถ๐บ๐ฎ๐๐ถ๐ผ๐ป, ๐ฉ๐ถ๐ฑ๐ฒ๐ผ ๐ฒ๐ฑ๐ถ๐๐ถ๐ป๐ด, ๐ฃ๐ต๐ผ๐๐ผ๐ด๐ฟ๐ฎ๐ฝ๐ต๐, ๐ฃ๐ต๐ผ๐๐ผ๐ ๐ฒ๐ฑ๐ถ๐๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐บ๐ฎ๐ป๐ ๐บ๐ผ๐ฟ๐ฒ ๐น๐ผ๐๐ ๐ผ๐ณ ๐๐ต๐ถ๐ป๐ด ๐ถ๐ป ๐ณ๐ฟ๐ฒ๐ฒ ๐๐ ๐
โ ๐ ๐ฐ๐น๐ฒ๐ฎ๐ป ๐น๐ถ๐ฏ๐ฟ๐ฎ๐ฟ๐ ๐ณ๐ผ๐ฟ ๐ด๐ฒ๐ฒ๐ธ๐.
๐๐ฒ๐ ๐๐๐ด ๐๐ผ๐๐ป๐๐, ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ถ๐ป๐ด, ๐๐๐ต๐ถ๐ฐ๐ฎ๐น ๐๐ฎ๐ฐ๐ธ๐ถ๐ป๐ด, ๐๐๐ฏ๐ฒ๐ฟ๐๐ฒ๐ฐ๐๐ฟ๐ถ๐๐, ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด & ๐น๐ผ๐ ๐บ๐ผ๐ฟ๐ฒ ๐น๐ฎ๐๐ฒ๐๐ ๐๐ฒ๐ฐ๐ต๐ป๐ผ๐น๐ผ๐ด๐ ๐ฏ๐ฎ๐๐ฒ๐ฑ ๐ฒ๐๐ผ๐ผ๐ธ๐.
๐๐ป ๐๐ต๐ถ๐ ๐๐ต๐ฎ๐ป๐ป๐ฒ๐น, ๐ฌ๐ผ๐ ๐๐ถ๐น๐น ๐ด๐ฒ๐ ๐จ๐ฑ๐ฒ๐บ๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐, ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ฟ๐ฎ ๐๐ผ๐๐ฟ๐๐ฒ๐, & ๐๐ฟ๐ฒ๐ฒ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐.
๐๐ค๐ง ๐๐ง๐๐ ๐๐ค๐ช๐ง๐จ๐๐จ,๐๐ค๐ค๐ ๐จ,๐ฅ๐ง๐ค๐๐๐๐ฉ๐จ,๐๐ฃ๐ฉ๐๐ง๐ฃ๐จ๐๐๐ฅ๐จ,๐ฅ๐ก๐๐๐๐ข๐๐ฃ๐ฉ๐จ ๐๐ฃ๐ ๐๐ค๐๐จ ๐ง๐๐ก๐๐ฉ๐๐ ๐ข๐๐ฉ๐๐ง๐๐๐ก ๐๐ฃ๐ ๐ช๐ฅ๐๐๐ฉ๐๐จ ๐๐ค๐๐ฃ ๐ค๐ช๐ง ๐ฉ๐๐ก๐๐๐ง๐๐ข ๐๐๐๐ฃ๐ฃ๐๐ก:
https://telegram.me/realgroupforprogrammer
๐ฆ๐ผ ๐๐ต๐ฎ๐ ๐ฎ๐ฟ๐ฒ ๐๐ผ๐ ๐๐ฎ๐ถ๐๐ถ๐ป๐ด ๐ณ๐ผ๐ฟ?
๐๐ผ๐ถ๐ป ๐ฟ๐ถ๐ด๐ต๐ ๐ป๐ผ๐๐
https://telegram.me/realgroupforprogrammer
๐๐ฒ๐ฎ๐ฟ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐จโ๐ป
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐๐ต๐ถ๐ฐ๐ฎ๐น ๐๐ฎ๐ฐ๐ธ๐ถ๐ป๐ด ๐
๐๐ฒ๐ฎ๐ฟ๐ป ๐๐น๐ฎ๐ฐ๐ธ๐๐ฎ๐ ๐ ๐ฒ๐๐ต๐ผ๐ฑ๐ ๐
๐๐ป๐ฑ ๐บ๐๐ฐ๐ต ๐บ๐ผ๐ฟ๐ฒ ๐น๐ฎ๐๐ฒ๐๐ ๐๐ฒ๐ฐ๐ต๐ป๐ถ๐ฐ๐ฎ๐น ๐บ๐ฒ๐๐ต๐ผ๐ฑ๐, ๐๐ถ๐ฝ๐ ๐ฎ๐ป๐ฑ ๐๐ฟ๐ถ๐ฐ๐ธ๐.
๐ป ๐๐ฒ๐ฟ๐ฒ ๐๐ผ๐ ๐ฐ๐ฎ๐ป ๐น๐ฒ๐ฎ๐ฟ๐ป :- ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด, ๐๐ฎ๐ฐ๐ธ๐ถ๐ป๐ด, ๐๐ฟ๐ฎ๐ฐ๐ธ๐ถ๐ป๐ด, ๐ช๐ฒ๐ฏ ๐ฑ๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐, ๐๐ฝ๐ฝ ๐ฑ๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐, ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด, ๐๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ถ๐ฎ๐น ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ฐ๐ฒ, ๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด, ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ, ๐๐ถ๐ด๐ถ๐๐ฎ๐น ๐ ๐ฎ๐ฟ๐ธ๐ฒ๐๐ถ๐ป๐ด, ๐๐ฟ๐ฎ๐ฝ๐ต๐ถ๐ฐ ๐ฑ๐ฒ๐๐ถ๐ด๐ป, ๐๐ป๐ถ๐บ๐ฎ๐๐ถ๐ผ๐ป, ๐ฉ๐ถ๐ฑ๐ฒ๐ผ ๐ฒ๐ฑ๐ถ๐๐ถ๐ป๐ด, ๐ฃ๐ต๐ผ๐๐ผ๐ด๐ฟ๐ฎ๐ฝ๐ต๐, ๐ฃ๐ต๐ผ๐๐ผ๐ ๐ฒ๐ฑ๐ถ๐๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐บ๐ฎ๐ป๐ ๐บ๐ผ๐ฟ๐ฒ ๐น๐ผ๐๐ ๐ผ๐ณ ๐๐ต๐ถ๐ป๐ด ๐ถ๐ป ๐ณ๐ฟ๐ฒ๐ฒ ๐๐ ๐
โ ๐ ๐ฐ๐น๐ฒ๐ฎ๐ป ๐น๐ถ๐ฏ๐ฟ๐ฎ๐ฟ๐ ๐ณ๐ผ๐ฟ ๐ด๐ฒ๐ฒ๐ธ๐.
๐๐ฒ๐ ๐๐๐ด ๐๐ผ๐๐ป๐๐, ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ถ๐ป๐ด, ๐๐๐ต๐ถ๐ฐ๐ฎ๐น ๐๐ฎ๐ฐ๐ธ๐ถ๐ป๐ด, ๐๐๐ฏ๐ฒ๐ฟ๐๐ฒ๐ฐ๐๐ฟ๐ถ๐๐, ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด & ๐น๐ผ๐ ๐บ๐ผ๐ฟ๐ฒ ๐น๐ฎ๐๐ฒ๐๐ ๐๐ฒ๐ฐ๐ต๐ป๐ผ๐น๐ผ๐ด๐ ๐ฏ๐ฎ๐๐ฒ๐ฑ ๐ฒ๐๐ผ๐ผ๐ธ๐.
๐๐ป ๐๐ต๐ถ๐ ๐๐ต๐ฎ๐ป๐ป๐ฒ๐น, ๐ฌ๐ผ๐ ๐๐ถ๐น๐น ๐ด๐ฒ๐ ๐จ๐ฑ๐ฒ๐บ๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐, ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ฟ๐ฎ ๐๐ผ๐๐ฟ๐๐ฒ๐, & ๐๐ฟ๐ฒ๐ฒ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐.
๐๐ค๐ง ๐๐ง๐๐ ๐๐ค๐ช๐ง๐จ๐๐จ,๐๐ค๐ค๐ ๐จ,๐ฅ๐ง๐ค๐๐๐๐ฉ๐จ,๐๐ฃ๐ฉ๐๐ง๐ฃ๐จ๐๐๐ฅ๐จ,๐ฅ๐ก๐๐๐๐ข๐๐ฃ๐ฉ๐จ ๐๐ฃ๐ ๐๐ค๐๐จ ๐ง๐๐ก๐๐ฉ๐๐ ๐ข๐๐ฉ๐๐ง๐๐๐ก ๐๐ฃ๐ ๐ช๐ฅ๐๐๐ฉ๐๐จ ๐๐ค๐๐ฃ ๐ค๐ช๐ง ๐ฉ๐๐ก๐๐๐ง๐๐ข ๐๐๐๐ฃ๐ฃ๐๐ก:
https://telegram.me/realgroupforprogrammer
๐ฆ๐ผ ๐๐ต๐ฎ๐ ๐ฎ๐ฟ๐ฒ ๐๐ผ๐ ๐๐ฎ๐ถ๐๐ถ๐ป๐ด ๐ณ๐ผ๐ฟ?
๐๐ผ๐ถ๐ป ๐ฟ๐ถ๐ด๐ต๐ ๐ป๐ผ๐๐
https://telegram.me/realgroupforprogrammer
Telegram
GROUP FOR PROGRAMMERS๐ฅ
Here we will provide premium free online courses, projects, trainings,internships,placement and jobs related material and updates.
Contact us at: @digitalhub2021
Part of @Server_z
Join discussion group: @datastructuresandalgo
Contact us at: @digitalhub2021
Part of @Server_z
Join discussion group: @datastructuresandalgo
Computer Science and Programming pinned ยซArtificial Intelligence && Deep Learning Channel for who have a passion for - * Artificial Intelligence * Machine Learning * Deep Learning * Data Science * Computer vision * Image Processing * Research Papers With advertising offers contact: @Muhammadyahyooโฆยป
Deep Learning with Python: Neural Networks (complete tutorial)
https://towardsdatascience.com/deep-learning-with-python-neural-networks-complete-tutorial-6b53c0b06af0
@deeplearning_ai
https://towardsdatascience.com/deep-learning-with-python-neural-networks-complete-tutorial-6b53c0b06af0
@deeplearning_ai
Dive into Deep Learning
Interactive deep learning book with code, math, and discussions
Implemented with NumPy/MXNet, PyTorch, and TensorFlow
Adopted at 300 universities from 55 countries
@MachineLearning_Programming
Interactive deep learning book with code, math, and discussions
Implemented with NumPy/MXNet, PyTorch, and TensorFlow
Adopted at 300 universities from 55 countries
@MachineLearning_Programming
Page: https://d2l.ai/
PyTorch based: https://d2l.ai/d2l-en-pytorch.pdf
MXNET based: https://d2l.ai/d2l-en.pdf
Github: https://github.com/d2l-ai/d2l-en
๐๐@MachineLearning_Programming
PyTorch based: https://d2l.ai/d2l-en-pytorch.pdf
MXNET based: https://d2l.ai/d2l-en.pdf
Github: https://github.com/d2l-ai/d2l-en
๐๐@MachineLearning_Programming
GitHub
GitHub - d2l-ai/d2l-en: Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 500 universitiesโฆ
Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 500 universities from 70 countries including Stanford, MIT, Harvard, and Cambridge. - d2l-ai/d2l-en
An important collection of the 15 best machine learning cheat sheets.
1- Supervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf
2- Unsupervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf
3- Deep Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf
4- Machine Learning Tips and Tricks
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf
5- Probabilities and Statistics
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf
6- Comprehensive Stanford Master Cheat Sheet
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf
7- Linear Algebra and Calculus
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf
8- Data Science Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf
9- Keras Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf
10- Deep Learning with Keras Cheat Sheet
https://github.com/rstudio/cheatsheets/raw/master/keras.pdf
11- Visual Guide to Neural Network Infrastructures
http://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png
12- Skicit-Learn Python Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf
13- Scikit-learn Cheat Sheet: Choosing the Right Estimator
https://scikit-learn.org/stable/tutorial/machine_learning_map/
14- Tensorflow Cheat Sheet
https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf
15- Machine Learning Test Cheat Sheet
https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/
https://t.me/MachineLearning_Programming
1- Supervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf
2- Unsupervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf
3- Deep Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf
4- Machine Learning Tips and Tricks
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf
5- Probabilities and Statistics
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf
6- Comprehensive Stanford Master Cheat Sheet
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf
7- Linear Algebra and Calculus
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf
8- Data Science Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf
9- Keras Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf
10- Deep Learning with Keras Cheat Sheet
https://github.com/rstudio/cheatsheets/raw/master/keras.pdf
11- Visual Guide to Neural Network Infrastructures
http://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png
12- Skicit-Learn Python Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf
13- Scikit-learn Cheat Sheet: Choosing the Right Estimator
https://scikit-learn.org/stable/tutorial/machine_learning_map/
14- Tensorflow Cheat Sheet
https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf
15- Machine Learning Test Cheat Sheet
https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/
https://t.me/MachineLearning_Programming
GitHub
stanford-cs-229-machine-learning/en/cheatsheet-supervised-learning.pdf at master ยท afshinea/stanford-cs-229-machine-learning
VIP cheatsheets for Stanford's CS 229 Machine Learning - afshinea/stanford-cs-229-machine-learning
โโโโโโ ConvNeXt โโโโโโ--
Facebook propose ConvNeXt, a pure ConvNet model constructed entirely from standard ConvNet modules. ConvNeXt is accurate, efficient, scalable and very simple in design.
Github: https://github.com/facebookresearch/ConvNeXt
Paper: https://arxiv.org/abs/2201.03545
invite your friends ๐น๐น
@MachineLearning_Programming
Facebook propose ConvNeXt, a pure ConvNet model constructed entirely from standard ConvNet modules. ConvNeXt is accurate, efficient, scalable and very simple in design.
Github: https://github.com/facebookresearch/ConvNeXt
Paper: https://arxiv.org/abs/2201.03545
invite your friends ๐น๐น
@MachineLearning_Programming
5TH UG2+ PRIZE CHALLENGE CVPR 2022
$10K PRIZES
http://cvpr2022.ug2challenge.org/
https://docs.google.com/forms/d/e/1FAIpQLSeK0j4cPRNFQbm27qMfaTr27wRQ6tXMV2gmohjaJlbn2fAX0A/viewform
https://cmt3.research.microsoft.com/User/Login?ReturnUrl=%2FUG2CHALLENGE2022
invite your friends ๐น๐น
@MachineLearning_Programming
$10K PRIZES
http://cvpr2022.ug2challenge.org/
https://docs.google.com/forms/d/e/1FAIpQLSeK0j4cPRNFQbm27qMfaTr27wRQ6tXMV2gmohjaJlbn2fAX0A/viewform
https://cmt3.research.microsoft.com/User/Login?ReturnUrl=%2FUG2CHALLENGE2022
invite your friends ๐น๐น
@MachineLearning_Programming
Google Docs
CVPR2022 UG2+ Challenge Registration
Registration Deadline: April 30, 2022
One registration per team.
The primary contact email addresses must be institutional, i.e., commercial email addresses (e.g., Gmail or QQmail) are NOT allowed.
One registration per team.
The primary contact email addresses must be institutional, i.e., commercial email addresses (e.g., Gmail or QQmail) are NOT allowed.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
https://www.ritchieng.com/the-incredible-pytorch/
https://github.com/ritchieng/the-incredible-pytorch
t.me/deeplearning_ai
.
https://www.ritchieng.com/the-incredible-pytorch/
https://github.com/ritchieng/the-incredible-pytorch
t.me/deeplearning_ai
.
GitHub
GitHub - ritchieng/the-incredible-pytorch: The Incredible PyTorch: a curated list of tutorials, papers, projects, communities andโฆ
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch. - GitHub - ritchieng/the-incredible-pytorch: The Incredible PyTorch: a curated list...
Want to jump ahead in artificial intelligence and/or digital pathology? Excited to share that after 2+ years of development PathML 2.0 is out! An open source #computational #pathology software library created by Dana-Farber Cancer Institute/Harvard Medical School and Weill Cornell Medicine led by Massimo Loda to lower the barrier to entry to #digitalpathology and #artificialintelligence , and streamline all #imageanalysis or #deeplearning workflows.
โญ Code: https://github.com/Dana-Farber-AIOS/pathml
โญ Code: https://github.com/Dana-Farber-AIOS/pathml
GitHub
GitHub - Dana-Farber-AIOS/pathml: Tools for computational pathology
Tools for computational pathology. Contribute to Dana-Farber-AIOS/pathml development by creating an account on GitHub.
9 Best Tools to Debug Python for 2022
https://www.ittsystems.com/best-tools-to-debug-python/
invite your friends ๐น๐น
@Deeplearning_ai
.
https://www.ittsystems.com/best-tools-to-debug-python/
invite your friends ๐น๐น
@Deeplearning_ai
.
ITT Systems
9 Best Tools to Debug Python for 2025
Python is a high-level programming language, one of the top ten in the world in 2025. Find out the best tools to debug Python applications.
This media is not supported in your browser
VIEW IN TELEGRAM
PyAutoGUI is a cross-platform GUI automation Python module for human beings. Used to programmatically control the mouse & keyboard.
https://github.com/YashIndane/Call-of-Duty-
invite your friends ๐น๐น
@Deeplearning_ai
https://github.com/YashIndane/Call-of-Duty-
invite your friends ๐น๐น
@Deeplearning_ai
This media is not supported in your browser
VIEW IN TELEGRAM
A lightweight vision library for performing large scale object detection & instance segmentation
Github: https://github.com/obss/sahi
Paper: https://arxiv.org/abs/2202.06934v1
Kaggle notebook: https://www.kaggle.com/remekkinas/sahi-slicing-aided-hyper-inference-yv5-and-yx
Dataset: https://paperswithcode.com/dataset/xview
invite your friends ๐น๐น
@Deeplearning_ai
Github: https://github.com/obss/sahi
Paper: https://arxiv.org/abs/2202.06934v1
Kaggle notebook: https://www.kaggle.com/remekkinas/sahi-slicing-aided-hyper-inference-yv5-and-yx
Dataset: https://paperswithcode.com/dataset/xview
invite your friends ๐น๐น
@Deeplearning_ai
Media is too big
VIEW IN TELEGRAM
Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021)
Project Page Paper Github
invite your friends ๐น๐น
@Deeplearning_ai
Project Page Paper Github
invite your friends ๐น๐น
@Deeplearning_ai
EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks
https://youtu.be/cXxEwI7QbKg
invite your friends ๐น๐น
@Deeplearning_ai
https://youtu.be/cXxEwI7QbKg
invite your friends ๐น๐น
@Deeplearning_ai
YouTube
Efficient Geometry-aware 3D Generative Adversarial Networks | CVPR 2022
Project website: https://matthew-a-chan.github.io/eg3d
Unsupervised generation of high-quality multi-view-consistent images and 3D shapes using only collections of single-view 2D photographs has been a long-standing challenge. Existing 3D GANs are eitherโฆ
Unsupervised generation of high-quality multi-view-consistent images and 3D shapes using only collections of single-view 2D photographs has been a long-standing challenge. Existing 3D GANs are eitherโฆ
This media is not supported in your browser
VIEW IN TELEGRAM
๐ธUFO: segmentation @140+ FPS๐ธ
๐Unified Transformer Framework for Co-Segmentation, Co-Saliency & Salient Object Detection. All in one!
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Unified framework for co-segmentation
โ Co-segmentation, co-saliency, saliency
โ Block for long-range dependencies
โ Able to reach for 140 FPS in inference
โ The new SOTA on multiple datasets
โ Source code under MIT License
[PAPER] [Source Code]
invite your friends ๐น๐น
@Deeplearning_ai
๐Unified Transformer Framework for Co-Segmentation, Co-Saliency & Salient Object Detection. All in one!
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:
โ Unified framework for co-segmentation
โ Co-segmentation, co-saliency, saliency
โ Block for long-range dependencies
โ Able to reach for 140 FPS in inference
โ The new SOTA on multiple datasets
โ Source code under MIT License
[PAPER] [Source Code]
invite your friends ๐น๐น
@Deeplearning_ai
If you are learning Machine Learning and wants to make end-to-end Machine Learning real-world projects, then this website can be a great resource for you.
It has project bundle(Dragon bundle) comprising more than 550+ real-world projects in ML, DL, DS, CV and NLP and PYTHON3.
More details are showned in the image above.
- Each project comes with required Dataset, complete source code(Python3) and documentation along with explanatory comments so that even beginner can understand.
- Life time access and projects are getting updates each month.
You can download the list of complete 550+ projects from our website.
Visit our website for more information.
Website Link:
https://tensorprojects.com/dragonbundle
It has project bundle(Dragon bundle) comprising more than 550+ real-world projects in ML, DL, DS, CV and NLP and PYTHON3.
More details are showned in the image above.
- Each project comes with required Dataset, complete source code(Python3) and documentation along with explanatory comments so that even beginner can understand.
- Life time access and projects are getting updates each month.
You can download the list of complete 550+ projects from our website.
Visit our website for more information.
Website Link:
https://tensorprojects.com/dragonbundle