ML Underhood
3.41K subscribers
206 photos
27 videos
102 links
Рассказываем, чем живёт ML в Яндексе, и обсуждаем важные новости индустрии.

Вопросы и предложения > @yandex_ml_brand
Download Telegram
ICML 2025: интересные доклады на тему ML — часть 2

When to Retrain Machine Learning Model

В работе исследуют проблему регулярного переобучения моделей в продакшн-системах: то, как часто нужно полностью обучать модель с нуля на новых данных. Приходят к выводу, что переобучать слишком часто — дорого и бесполезно, попробуют понять, в какие моменты времени это лучше делать. Получается временной ряд, который они аппроксимируют своими методами. Решение имеет смысл, только если есть возможность переобучать модель очень часто, но хочется делать это реже — без ущерба для качества. При этом, поскольку подход ориентирован именно на полное переобучение «с нуля», он не применяется к онлайн-обучению: там всегда предпочтительнее дообучать модель настолько часто, насколько это возможно.

How to set AdamW’s weight decay as you scale model and dataset size

Новый метод для подбора гиперпараметра регуляризации в AdamW. Авторы переписали формулы weight decay в виде, который начинает походить на экспоненциальное сглаживание (EWMA). Репараметризуют его новыми параметрами и говорят, что подбор одного нового параметра работает проще и сохраняет свойства при изменении размеров датасета, размера батча или размера архитектуры. То есть можно один раз подобрать и какое-то время о нём не вспоминать. Формула очень простая и её будет легко попробовать в боевых моделях.

Efficient Optimization with Orthogonality Constraint: a Randomized Riemannian Submanifold Method

Ещё одна статья на тему оптимизации на римановых многообразиях для ортогональных матриц. Из интересного — оказывается, условия ортогональности используются сейчас не только в классических задачах вроде PCA, но и в некоторых задачах файнтюна. К сожалению, автор не читал статью Orthogonal Weight Normalization, где в 2017 году была предложена простая и вычислительно эффективная идея, хорошо зарекомендовавшая себя на практике. Было бы круто сравнить эти подходы на одной задаче.

Интересное отобрал Алексей Морозов

ML Underhood

#YaICML25
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥2🤔1
Новая порция докладов с ICML 2025

Конференция в разгаре, а инженеры из Яндекса продолжают отмечать и комментировать любопытные работы. Делимся ими с вами.

AI's Models of the World, and Ours

Invited talk от Джона Кляйнберга — об отличиях в представлениях о мире у моделей и у человека. Мотивация примерно такая: после наступления сингулярности человеческий труд во многих областях станет не нужен, и это как минимум обидно, если не сказать страшно. Хочется, чтобы люди продолжали что-то делать. Чтобы представить эту ситуацию, можно обратиться к задаче, где она уже произошла: к игре в шахматы. Несмотря на то, что компьютеры давно играют в шахматы лучше людей, интерес к игре только вырос — в первую очередь, благодаря интернету. Люди играют в шахматы больше, чем когда-либо. Если сравнить шахматные партии с участием компьютера и партии между людьми, видно, что во вторых намного больше красивых комбинаций — эстетики, которая играла важную роль в шахматном образовании прошлого. Проще говоря, в человеческих партиях есть то, что принято называть «красивыми идеями», благодаря которым эта игра и получила такое распространение во всем мире.

Кляйнберг рассказал о проблеме обучения моделей, играющих как человек с рейтингом, например, 1100, 1200, 1600, 1800 или 2300, в надежде воспроизвести красивые человеческие партии. Это оказалось сложней, чем можно было ожидать. С человеческой точки зрения ходы моделей, которые пытаются имитировать игру человека, всё ещё выглядят неестественно, и лучшие попытки дают accuracy около 60%. Но результат оказался востребован — «с компьютером намного интереснее играть, когда он проигрывает» (с).

Во второй части выступления Кляйнберг упомянул старый результат: задача распознавания языка из счётно бесконечного множества неразрешима за конечное время, зато задача генерации предложений из неизвестного языка — решается. Но решить её можно тривиально: выбрать и генерировать удлиняемую простую конструкцию из языка — неинтересно. Результат группы Кляйнберга этого года — возможность делать это с константной плотностью, то есть так, чтобы выход модели покрывал ⅛ языка. С другой стороны, несложно доказать, что больше половины неизвестного произвольного языка сгенерировать теоретически невозможно.

Generative AI's Collision with Copyright Law

Доклад о том, как использовать защищённые авторским правом данные для обучения моделей. Ключевой вывод — ситуация сильно зависит от страны:

— В Израиле любое использование данных для обучения признаётся fair use.

— В ЕС данные можно использовать, если к ним есть легальный доступ; при этом его нельзя ограничивать для образовательных и культурных учреждений. У авторов есть право исключать свои произведения из датасетов, используемых в обучении. В Японии и Сингапуре ситуация в целом такая же.

— В США всё сложнее из-за прецедентного права, многое решается индивидуально в суде. Авторы (в отличие от правообладателей) не могут запретить использование своих работ для обучения. А если использование данных может повлиять на рынок правообладателя, скорее всего, это считается нарушением.

Riemannian Diffusion Adaptation for Distributed Optimization on Manifolds

Отдельный лайк авторам за задачу оптимизации в римановых многообразиях. Сюда входит задача глубокого обучения с ортогональными матрицами, а это то, что помогало стабилизировать асинхронное глубокое обучение в течение продолжительного времени. На древнем рекламном фреймворке глубокого обучения такие модели — с всегда ортогональными слоями — обучались стабильнее и показывали лучшее качество (при переходе на allreduce, к сожалению, ортогональные матрицы стали вести себя так же, как обычные, но медленнее). Авторы приписывают к достоинствам метода решение задач на любых многообразиях, но при этом не сравнивают себя со специализированными методами для разных задач. Вкладка экспериментов — скромная для метода, решающего любые задачи: в abstract — четыре примера, в экспериментах — всего два, и нет сравнения со специализированными под каждую задачу методами.

Работы заметили Алексей Поспелов и Алексей Морозов

ML Underhood

#YaICML25
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍74🔥2
Пятничное: немного атмосферы ICML 2025

— Большие очереди на регистрацию и прекрасные виды снаружи Vancouver Convention Centre.

— Арт-галерея с визуализацией кусочно-линейных нейросетей на одном из стендов.

— Пасека на крыше здания, в котором проходит конференция.

— Аутентичный корейский исследователь представляет свой постер.

ML Underhood

#YaICML25
9🤣3👍2🔥2
AQUA-KV: адаптивная квантизация KV-кэша

На ICML 2025 команда Yandex Research представила шесть статей (каких именно — читайте в одном из предыдущих постов) — среди них есть работа, посвящённая методу адаптивной квантизации KV-кэша. Один из авторов, исследователь Yandex Research Алина Шутова, рассказала нашему каналу, в чём суть предложенного в публикации способа.

Одна из ключевых проблем эксплуатации LLM — экспоненциальный рост потребления памяти графических процессоров при обработке длинных контекстов. Это связано с необходимостью хранения KV-кэша. Для современных моделей, таких как Llama 3.2 70B, и контекстов в 131 тысячу токенов, объём KV-кэша может достигать 42,9 ГБ на последовательность, что существенно ограничивает практическое применение и увеличивает стоимость вычислений. Традиционные методы сжатия, такие как примитивное квантование или прунинг, демонстрируют значительную деградацию качества генерации при агрессивных режимах сжатия, особенно в области 2–3 бит на значение.

Предложенный авторами статьи метод AQUA-KV (Adaptive QUAntization for Key-Value) представляет принципиально новый подход, основанный на фундаментальном наблюдении: векторы ключей и значений в соседних слоях трансформера обладают высокой степенью корреляции. Эта структурная избыточность позволяет прогнозировать значительную часть информации слоя k+1 на основе данных слоя k.

Вместо независимого квантования каждого слоя AQUA-KV использует обученные линейные предикторы. Один предиктор предсказывает ключи слоя k+1 на основе ключей слоя k, другой предсказывает значения слоя k+1 по комбинации предсказанных ключей этого слоя и значений слоя k. Обучение этих компактных адаптеров проводится в ходе одноразовой калибровки на целевой модели.

Критический шаг метода — переход от квантования векторов целиком к квантованию только остаточной информации, то есть разности между фактическими векторами слоя и их предсказаниями. Поскольку остаток содержит лишь ту информацию, которую нельзя получить из предыдущего слоя, его информационная энтропия существенно ниже. Эта остаточная компонента подвергается экстремальному квантованию (до 2–2,5 бит на элемент) с применением векторного квантования без данных (data-free VQ), адаптивно оптимизирующего распределение битов под дисперсию остатков. Для восстановления KV-векторов во время инференса используются те же предикторы и деквантованный остаток.

Эксперименты демонстрируют эффективность AQUA-KV. На моделях семейств Llama 3.2 и Qwen 2.5 применение метода с квантованием до 2 бит на значение привело к снижению объёма памяти KV-кэша в 16 раз (с ~43 ГБ до ~2,7 ГБ для контекста в 131K токенов) при сохранении практически исходного качества генерации. Относительное увеличение перплексии составило менее 1%, а деградация точности на задачах длинного контекста из бенчмарка LongBench не превысила 1%. AQUA-KV совместим с любыми методами квантизации, и, как продемонстрировано в работе, заметно улучшает качество всех рассмотренных методов. Метод демонстрирует совместимость с техниками прунинга, такими как H2O, обеспечивая дополнительную экономию памяти. Код AQUA-KV можно найти на GitHub.

ML Underhood

#YaICML25
203👍1🔥1
Начинаем новую неделю с новой конференцией

В Вене стартовала ACL 2025. В ближайшие дни мы будем рассказывать обо всём самом интересном, что увидим на мероприятии, а сейчас поделимся занимательной статистикой.

— Всего на конференцию зарегистрировались около 20 тысяч авторов.
— 51% авторов — из Китая, ещё 18,6% — из США.
— У 67% работ, поданных на ACL, в названии есть LLM.
— Почти так же часто, как LLM, в названиях встречается двоеточие — оно есть в 65% заголовков.

Рассказывайте в комментариях, о чём, связанном с ACL, вам интересно было бы почитать. А, может быть, вы сами на конференции? Тогда обязательно делитесь впечатлениями!

#YaACL25

ML Underhood
🔥7👍43😁3
Как проходит ACL 2025 👀

Продолжаем рассказывать, что увидели и услышали на конференции: листайте фото и видео!

В этом году ACL состоялась в Austria Center Vienna — конференц-зале в центре Вены. Красиво не только внутри, но и снаружи. Иногда на докладах людно, иногда — не очень.

Поразило невероятное количество постеров: около 250 только в одном зале. Работы очень разные, от «денег нет, но вы держитесь» до лаконичных постеров на А4. Мы выбрали для вас самые интересные из них — о трендах и статьях читайте в Душном NLP:

В Вене проходит 63-я ежегодная конференция ассоциации компьютерной лингвистики — ACL 2025

Интересное с конференции ACL 2025

Кадры для вас сделали и отобрали Алексей Березникер и Александр Николайчик

#YaACL25

ML Underhood
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥86👍4