ML Career
214 subscribers
121 photos
4 videos
2 files
148 links
Branched from @data_career
Download Telegram
🚀👩‍🚀 Всех с днем космонавтики! 🚀👽

Повторим всем известную фразу "Поехали!". Присоединяйтесь к Первому открытому русскоязычному курсу Геопространственный анализ данных (beta version)! Откройте для себя силу геоданных с помощью теоретических и практических материалов.

В данном курсе Вы научитесь анализировать и визуализировать пространственную информацию, работать с векторными данными, создавать свои геодатасеты, познакомитесь с Shapely, GeoPandas, OSMnx, H3 и другими библиотеками.

Начало занятий — уже совсем скоро! Стартуем 22.04.2024
Регистрируйтесь на странице курса и добавляйтесь в чат участников.

https://t.me/edu_cours/3951
Please open Telegram to view this post
VIEW IN TELEGRAM
Друзья, привет! Ищем спикеров на офлайн DataFest - Сочи. Планируем проводить в период: 26 мая - 2 июня предварительно на площадке Университета Сириус.

Для участия мне в личку:
- Компани/должность
- Тема доклада
- Короткое описание доклада
LLM Zoomcamp

Бесплатный онлайн-курс о реальном применении LLM. За 10 недель вы узнаете, как создать бота с искусственным интеллектом, который сможет отвечать на вопросы о вашей базе знаний.

Для прохождения курса необходимы:

🛑базовые знания Python
🛑умение работать с командной строкой
🛑базовое знание Docker
🛑знания AI или ML не обязательно

Дата старта курса 17 июня.

Подробная информация и регистрация здесь

#Канал курса: t.me/llm_zoomcamp

#LLM #Zoomcamp #LLM_Zoomcamp #DataTalksClub #LLMZoomcamp #LLMOps

Источник: https://t.me/dataexplorers/313
Please open Telegram to view this post
VIEW IN TELEGRAM
Тут мой старый знакомый, Александр Червов, автор sberloga, делает какой-то большой научный проект по нейронкам, которые собирают кубик рубика

👨‍🔬 Проект

В общем, ему нужны волонтёры для написания моделей и проведения экспериментов. Взамен вы получите опыт написания реальных RL, DL, ML моделей под наставничеством Александра. Участникам проекта нужно будет проводить эксперименты и создавать модели аналогичные AlphaGo для теории групп, например для группы кубика Рубика.

📜 Что вам это даст

- Реальный опыт работы с RL, DL, ML
- Ценный пункт в вашем резюме, который подчеркнет ваш профессионализм и знания в области
- Инсайты можно будет опубликовать в научной статье для научного журнала

💌 Пишите Саше Червову
This media is not supported in your browser
VIEW IN TELEGRAM
Релиз NumPy 2.0.0

16 июня 2024 года состоялся релиз стабильной версии Python-библиотеки для научных вычислений #NumPy 2.0.0. Это первый значительный релиз открытого проекта с 2006 года.

По информации OpenNET, наиболее крупное нарушение совместимости в релизе NumPy 2.0.0 связано с сохранением точности скалярных выражений, например, "np.float32(3) + 3" теперь вернёт значение с типом float32, а не float64, а в выражениях с несколькими типами для результата будет использован тип с наивысшей точностью, то есть "np.array([3], dtype=np.float32) + np.float64(3)" вернёт значение с типом float64.

https://t.me/dataexplorers/332 #release
Forwarded from AIRI Institute
Открыт прием заявок на Лето с AIRI!⚡️

В этом году мы запускаем Школу совместно с Передовой Инженерной Школой ИТМО. Программа пройдет в Санкт-Петербурге с 20 по 30 августа.

🗓 Подать заявку можно по ссылке до 23:59 14 июля 2024 года.

Школа включает в себя лекции, семинары и практическую работу по направлениям:

— Мультимодальные архитектуры и генеративный ИИ в промышленности
— Модели воплощенного ИИ и обучение с подкреплением в робототехнике
— Искусственный интеллект и химия
— Доверенный искусственный интеллект

📍Питание, обучение и проживание бесплатное, оплатить самим нужно будет только проезд.

Подавайте заявки и делитесь постом с друзьями и коллегами!
https://avito.tech/education/statistics

Часть 1
Статистический критерий
Статистическая мощность
Z-test
T-test
Метод Монте-Карло

1. Статистический критерий
1.1. Зачем нужна прикладная статистика?
1.2. Статистические гипотезы
1.3. Статистические функции в Python
1.4. Двусторонний критерий

2. Статистическая мощность
2.1. Статистическая мощность
2.2. Мощность для задачи про доставку
2.3. Minimum detectable effect aka MDE
2.4.1. Доверительный интервал
2.4.2. Доверительный интервал. Продолжение
2.4.3. Доверительный интервал Уилсона
2.5. Алгоритм проверки гипотез.
3. Z-test
3.1. Нормальное распределение
3.2. Z-test
3.3. Занятие со звездочкой, Z-test
4. T-test
4.1. Критерии сравнения средних. T-критерий Стьюдента
4.2. T-test4.3. Доверительный интервал
4.4. A/B-тесты. Двувыборочный Т-test
4.5. MDE для T-test5. Метод Монте-Карло
5.1. Метод Монте-Карло
5.2. Метод Монте-Карло (на исторических данных)
5.3. Метод Монте-Карло (определение мощности на исторических данных)

Часть 2
Критерий Колмогорова
Критерий Колмогорова-Смирнова
Хи-квадрат
Критерий Манна-Уитни
Бутстрап
Линеаризация

https://t.me/div_conv/242/5340
Forwarded from эйай ньюз
🔥Mastering LLMs: Открытый курс по LLM от практиков

Я заметил, что очень хорошо разлетелся пост с ноутбуком для файнтюна LLaMa 3.1 в колабе. Поэтому принес вам еще имбовый курс по LLM от практиков для практиков. Он будет актуален для технических специалистов (включая инженеров и DS-ов), которые имеют некоторый опыт работы с LLM, да, я думаю, и для начинающих практиков он тоже хорошо зайдет.

Это набор лекций, которые покрывают такие прикладные темы как RAG, файн-тюнинг, промпт-инжиниринг, оценка качества моделей и прочее. Курс уникальный, потому что лекции ведут 25+ разных опытных чуваков из индустрии, которые являются экспертами по соответсвующим темам. Там ребята из Pytorch (Meta), Anthropic, Mistral, Fireworks-ai и других компаний.

Курс очень хорошо оформлен. К каждой лекции идут слайды, заметки, дополнительные ресурсы со ссылками и полный транскрипт видео.

Минимальные требования, чтобы успешно смотреть курс:
- Базовое знакомство с LLM-ками.
- Если такого опыт у вас нет, то рекомендуется начать с видео A Hacker’s Guide to LLMs от Джереми Ховарда, а также пройти туториал об Instruction Tuning LlaMa-2.

> Ссылка на курс: https://parlance-labs.com/education/

Давайте еще накидаем в комментах другие классные курсы по NLP, которые вы сами смотрели/проходили.

#ликбез
@ai_newz
Книга "Управление DS проектами и продуктами при помощи Lean Data Science"
Асхат Уразбаев

What is Lean DS
Lean Data Science — открытый подход к управлению DS проектами и продуктами —
• Ориентированный на бизнес • Основанный на гипотезах
• Командный и итеративный • Строгий и воспроизводимый
Это позволит увеличить вероятность успеха за счет прозрачности процессов, снижения Time-to-Market и фокуса на инженерном совершенстве
LeanDS ориентирован на бизнес. Мы обсуждаем финансовую эффективность ML проек- тов и фокусируемся на их ускорении. Тем не менее, отдельные практики LeanDS можно использовать в исследовательских и тренировочных проектах.
Ключевая идея LeanDS — явная и четкая формулировка гипотез.
LeanDS содержит практики командной работы. Работа ведется итеративно и инкремен- тально — от простого к сложному с фокусом на быстрой поставке ценного результата.
Строгий и воспроизводимый. Техническое совершенство кода, автоматизация тестирова- ния и поставки очень важно для достижения хорошего бизнес-результата.

О структуре книги
Мы пройдем по всему жизненному циклу создания ML продукта — от идеи до реализации и рассмотрим практики позволяющие упростить и ускорить его создание.
Мы рассмотрим старт нового ML-продукта и начнем с создания «Технического Задания» на продукт в виде AI Project Canvas. ML-продукт может оказаться частью большего продукта и мы расскажем, как его спроектировать в главе Story Map.
Мы обсудим как ставить задачи членам команды в виде продуктовых гипотез и поговорим об их приоритизации. Для планирования работ по гипотезе воспользуемся подходом «Мерседеc».
Мы поговорим о структуре команды, а в последних главах рассмотрим более подробно подход Канбан в применении к DS проектам.

https://t.me/leands_chat/3487
#LeanDataScience #book
🤖AutoML в массы

Новый бесплатный курс AutoML in Practice, доступный всем на платформе ods. В серии видео-лекций вас научат избавляться от рутины во внутренних процессах жизненного цикла моделей и повышать эффективность Data Science-команд.

А еще курс:
Поможет оценить целесообразность и своевременность разработки и внедрения AutoML в вашей компании/команде
Рассматривает ключевые сценарии применения AutoML на практике
Погружает в технические детали реализации своего решения с нуля
В процессе курса у вас будет возможно написать кодовую ML-базу для сервиса
результатами их применения.

#free #course #AutoML
https://t.me/mashkka_ds/1708
Please open Telegram to view this post
VIEW IN TELEGRAM
Осенний Data Science митап Lamoda Tech!

Когда: 25 сентября в 19:00.

Где: онлайн.

Что в программе:

Новый уровень ML-персонализации Lamoda
: как мы усилили ее в каталоге и перенесли в другие продукты

Дана Злочевская, руководитель DS-группы ранжирования и поиска в Lamoda Tech

Повторное использование кода в ML: почему ML-пайплайны могут помочь? Дима Курганский, MLOps инженер в Lamoda Tech

ML-прайсинг на Lamoda
: вошли и вышли, приключение на 20 минут

Слава Цыганков, руководитель DS-группы прогнозирования и оптимизации в Lamoda Tech

Места в офисе быстро закончились, но мы ждем тебя на онлайн-встрече 25 сентября в 19:00! Подробности и регистрация по ссылке.

Реклама. ООО "Ламода Тех". ИНН 7734461512. Erid: LjN8KJszB
🔥Прошедшие дни были богаты на запуски!

Стартовали сразу три курса:
- доступны на платформе первые лекции курсов Open ML Course: Классические модели ML и Natural Language Processing !
- сегодня в 12:00 по мск открывается первая лекция обновленного курса Deep Reinforcement Learning

Продолжается:
👍Курс от Альфа-Банка по AutoML in practice - 22 онлайн-урока с тестами. Каждый урок — в среднем по 15 минут. 🔥
👍Регистрация участников на Data Fest Siberia 5 , который пройдет 12 октября в Новосибирске 🔥

Присоединяйся!
https://t.me/datafest/754