Leetcode Question of Today
70 subscribers
470 links
Send Question of Today from Leetcode everyday at 0:00 (UTC)
Download Telegram
2022-10-24
1239. Maximum Length of a Concatenated String with Unique Characters

Topic: Array, String, Backtracking, Bit Manipulation
Difficulty: Medium

Problem:
You are given an array of strings arr. A string s is formed by the concatenation of a subsequence of arr that has unique characters.

Return the maximum possible length of s.

A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.

Example 1:

Input: arr = ["un","iq","ue"]
Output: 4
Explanation: All the valid concatenations are:
- ""
- "un"
- "iq"
- "ue"
- "uniq" ("un" + "iq")
- "ique" ("iq" + "ue")
Maximum length is 4.


Example 2:

Input: arr = ["cha","r","act","ers"]
Output: 6
Explanation: Possible longest valid concatenations are "chaers" ("cha" + "ers") and "acters" ("act" + "ers").


Example 3:

Input: arr = ["abcdefghijklmnopqrstuvwxyz"]
Output: 26
Explanation: The only string in arr has all 26 characters.


Constraints:

1 <= arr.length <= 16
1 <= arr[i].length <= 26
arr[i] contains only lowercase English letters.
2022-10-25
1662. Check If Two String Arrays are Equivalent

Topic: Array, String
Difficulty: Easy

Problem:
Given two string arrays word1 and word2, return true if the two arrays represent the same string, and false otherwise.

A string is represented by an array if the array elements concatenated in order forms the string.

Example 1:

Input: word1 = ["ab", "c"], word2 = ["a", "bc"]
Output: true
Explanation:
word1 represents string "ab" + "c" -> "abc"
word2 represents string "a" + "bc" -> "abc"
The strings are the same, so return true.


Example 2:

Input: word1 = ["a", "cb"], word2 = ["ab", "c"]
Output: false


Example 3:

Input: word1  = ["abc", "d", "defg"], word2 = ["abcddefg"]
Output: true


Constraints:

1 <= word1.length, word2.length <= 10^3
1 <= word1[i].length, word2[i].length <= 10^3
1 <= sum(word1[i].length), sum(word2[i].length) <= 10^3
word1[i] and word2[i] consist of lowercase letters.
2022-10-26
523. Continuous Subarray Sum

Topic: Array, Hash Table, Math, Prefix Sum
Difficulty: Medium

Problem:
Given an integer array nums and an integer k, return true if nums has a continuous subarray of size at least two whose elements sum up to a multiple of k, or false otherwise.

An integer x is a multiple of k if there exists an integer n such that x = n * k. 0 is always a multiple of k.

Example 1:

Input: nums = [23,2,4,6,7], k = 6
Output: true
Explanation: [2, 4] is a continuous subarray of size 2 whose elements sum up to 6.


Example 2:

Input: nums = [23,2,6,4,7], k = 6
Output: true
Explanation: [23, 2, 6, 4, 7] is an continuous subarray of size 5 whose elements sum up to 42.
42 is a multiple of 6 because 42 = 7 * 6 and 7 is an integer.


Example 3:

Input: nums = [23,2,6,4,7], k = 13
Output: false


Constraints:

1 <= nums.length <= 10^5
0 <= nums[i] <= 10^9
0 <= sum(nums[i]) <= 2^31 - 1
1 <= k <= 2^31 - 1
2022-10-27
835. Image Overlap

Topic: Array, Matrix
Difficulty: Medium

Problem:
You are given two images, img1 and img2, represented as binary, square matrices of size n x n. A binary matrix has only 0s and 1s as values.

We translate one image however we choose by sliding all the 1 bits left, right, up, and/or down any number of units. We then place it on top of the other image. We can then calculate the overlap by counting the number of positions that have a 1 in both images.

Note also that a translation does not include any kind of rotation. Any 1 bits that are translated outside of the matrix borders are erased.

Return the largest possible overlap.

Example 1:

Image: https://assets.leetcode.com/uploads/2020/09/09/overlap1.jpg

Input: img1 = [[1,1,0],[0,1,0],[0,1,0]], img2 = [[0,0,0],[0,1,1],[0,0,1]]
Output: 3
Explanation: We translate img1 to right by 1 unit and down by 1 unit.

Image: [https://assets.leetcode.com/uploads/2020/09/09/overlap_step1.jpg](https://assets.leetcode.com/uploads/2020/09/09/overlap_step1.jpg)

The number of positions that have a 1 in both images is 3 (shown in red).

Image: [https://assets.leetcode.com/uploads/2020/09/09/overlap_step2.jpg](https://assets.leetcode.com/uploads/2020/09/09/overlap_step2.jpg)


Example 2:

Input: img1 = [[1]], img2 = [[1]]
Output: 1


Example 3:

Input: img1 = [[0]], img2 = [[0]]
Output: 0


Constraints:

n == img1.length == img1[i].length
n == img2.length == img2[i].length
1 <= n <= 30
img1[i][j] is either 0 or 1.
img2[i][j] is either 0 or 1.
2022-10-28
49. Group Anagrams

Topic: Array, Hash Table, String, Sorting
Difficulty: Medium

Problem:
Given an array of strings strs, group the anagrams together. You can return the answer in any order.

An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.

Example 1:

Input: strs = ["eat","tea","tan","ate","nat","bat"]
Output: [["bat"],["nat","tan"],["ate","eat","tea"]]


Example 2:

Input: strs = [""]
Output: [[""]]


Example 3:

Input: strs = ["a"]
Output: [["a"]]


Constraints:

1 <= strs.length <= 10^4
0 <= strs[i].length <= 100
strs[i] consists of lowercase English letters.
2022-10-29
2136. Earliest Possible Day of Full Bloom

Topic: Array, Greedy, Sorting
Difficulty: Hard

Problem:
You have n flower seeds. Every seed must be planted first before it can begin to grow, then bloom. Planting a seed takes time and so does the growth of a seed. You are given two 0-indexed integer arrays plantTime and growTime, of length n each:

plantTime[i] is the number of full days it takes you to plant the i^th seed. Every day, you can work on planting exactly one seed. You do not have to work on planting the same seed on consecutive days, but the planting of a seed is not complete until you have worked plantTime[i] days on planting it in total.
growTime[i] is the number of full days it takes the i^th seed to grow after being completely planted. After the last day of its growth, the flower blooms and stays bloomed forever.

From the beginning of day 0, you can plant the seeds in any order.

Return the earliest possible day where all seeds are blooming.

Example 1:

Image: https://assets.leetcode.com/uploads/2021/12/21/1.png

Input: plantTime = [1,4,3], growTime = [2,3,1]
Output: 9
Explanation: The grayed out pots represent planting days, colored pots represent growing days, and the flower represents the day it blooms.
One optimal way is:
On day 0, plant the 0^th seed. The seed grows for 2 full days and blooms on day 3.
On days 1, 2, 3, and 4, plant the 1^st seed. The seed grows for 3 full days and blooms on day 8.
On days 5, 6, and 7, plant the 2^nd seed. The seed grows for 1 full day and blooms on day 9.
Thus, on day 9, all the seeds are blooming.


Example 2:

Image: https://assets.leetcode.com/uploads/2021/12/21/2.png

Input: plantTime = [1,2,3,2], growTime = [2,1,2,1]
Output: 9
Explanation: The grayed out pots represent planting days, colored pots represent growing days, and the flower represents the day it blooms.
One optimal way is:
On day 1, plant the 0^th seed. The seed grows for 2 full days and blooms on day 4.
On days 0 and 3, plant the 1^st seed. The seed grows for 1 full day and blooms on day 5.
On days 2, 4, and 5, plant the 2^nd seed. The seed grows for 2 full days and blooms on day 8.
On days 6 and 7, plant the 3^rd seed. The seed grows for 1 full day and blooms on day 9.
Thus, on day 9, all the seeds are blooming.


Example 3:

Input: plantTime = [1], growTime = [1]
Output: 2
Explanation: On day 0, plant the 0^th seed. The seed grows for 1 full day and blooms on day 2.
Thus, on day 2, all the seeds are blooming.


Constraints:

n == plantTime.length == growTime.length
1 <= n <= 10^5
1 <= plantTime[i], growTime[i] <= 10^4
2022-10-30
1293. Shortest Path in a Grid with Obstacles Elimination

Topic: Array, Breadth-First Search, Matrix
Difficulty: Hard

Problem:
You are given an m x n integer matrix grid where each cell is either 0 (empty) or 1 (obstacle). You can move up, down, left, or right from and to an empty cell in one step.

Return the minimum number of steps to walk from the upper left corner (0, 0) to the lower right corner (m - 1, n - 1) given that you can eliminate at most k obstacles. If it is not possible to find such walk return -1.

Example 1:

Image: https://assets.leetcode.com/uploads/2021/09/30/short1-grid.jpg

Input: grid = [[0,0,0],[1,1,0],[0,0,0],[0,1,1],[0,0,0]], k = 1
Output: 6
Explanation:
The shortest path without eliminating any obstacle is 10.
The shortest path with one obstacle elimination at position (3,2) is 6. Such path is (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2) -> (3,2) -> (4,2).


Example 2:

Image: https://assets.leetcode.com/uploads/2021/09/30/short2-grid.jpg

Input: grid = [[0,1,1],[1,1,1],[1,0,0]], k = 1
Output: -1
Explanation: We need to eliminate at least two obstacles to find such a walk.


Constraints:

m == grid.length
n == grid[i].length
1 <= m, n <= 40
1 <= k <= m * n
grid[i][j] is either 0 or 1.
grid[0][0] == grid[m - 1][n - 1] == 0
2022-10-31
766. Toeplitz Matrix

Topic: Array, Matrix
Difficulty: Easy

Problem:
Given an m x n matrix, return true if the matrix is Toeplitz. Otherwise, return false.

A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same elements.

Example 1:

Image: https://assets.leetcode.com/uploads/2020/11/04/ex1.jpg

Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
Output: true
Explanation:
In the above grid, the diagonals are:
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]".
In each diagonal all elements are the same, so the answer is True.


Example 2:

Image: https://assets.leetcode.com/uploads/2020/11/04/ex2.jpg

Input: matrix = [[1,2],[2,2]]
Output: false
Explanation:
The diagonal "[1, 2]" has different elements.


Constraints:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 20
0 <= matrix[i][j] <= 99

Follow up:

• What if the matrix is stored on disk, and the memory is limited such that you can only load at most one row of the matrix into the memory at once?
• What if the matrix is so large that you can only load up a partial row into the memory at once?
2022-11-01
1706. Where Will the Ball Fall

Topic: Array, Dynamic Programming, Depth-First Search, Matrix, Simulation
Difficulty: Medium

Problem:
You have a 2-D grid of size m x n representing a box, and you have n balls. The box is open on the top and bottom sides.

Each cell in the box has a diagonal board spanning two corners of the cell that can redirect a ball to the right or to the left.

• A board that redirects the ball to the right spans the top-left corner to the bottom-right corner and is represented in the grid as 1.
• A board that redirects the ball to the left spans the top-right corner to the bottom-left corner and is represented in the grid as -1.

We drop one ball at the top of each column of the box. Each ball can get stuck in the box or fall out of the bottom. A ball gets stuck if it hits a "V" shaped pattern between two boards or if a board redirects the ball into either wall of the box.

Return an array answer of size n where answer[i] is the column that the ball falls out of at the bottom after dropping the ball from the i^th column at the top, or -1 if the ball gets stuck in the box.

Example 1:

Image: https://assets.leetcode.com/uploads/2019/09/26/ball.jpg

Input: grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]]
Output: [1,-1,-1,-1,-1]
Explanation: This example is shown in the photo.
Ball b0 is dropped at column 0 and falls out of the box at column 1.
Ball b1 is dropped at column 1 and will get stuck in the box between column 2 and 3 and row 1.
Ball b2 is dropped at column 2 and will get stuck on the box between column 2 and 3 and row 0.
Ball b3 is dropped at column 3 and will get stuck on the box between column 2 and 3 and row 0.
Ball b4 is dropped at column 4 and will get stuck on the box between column 2 and 3 and row 1.


Example 2:

Input: grid = [[-1]]
Output: [-1]
Explanation: The ball gets stuck against the left wall.


Example 3:

Input: grid = [[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1]]
Output: [0,1,2,3,4,-1]


Constraints:

m == grid.length
n == grid[i].length
1 <= m, n <= 100
grid[i][j] is 1 or -1.
2022-11-02
433. Minimum Genetic Mutation

Topic: Hash Table, String, Breadth-First Search
Difficulty: Medium

Problem:
A gene string can be represented by an 8-character long string, with choices from 'A', 'C', 'G', and 'T'.

Suppose we need to investigate a mutation from a gene string start to a gene string end where one mutation is defined as one single character changed in the gene string.

• For example, "AACCGGTT" --> "AACCGGTA" is one mutation.

There is also a gene bank bank that records all the valid gene mutations. A gene must be in bank to make it a valid gene string.

Given the two gene strings start and end and the gene bank bank, return the minimum number of mutations needed to mutate from start to end. If there is no such a mutation, return -1.

Note that the starting point is assumed to be valid, so it might not be included in the bank.

Example 1:

Input: start = "AACCGGTT", end = "AACCGGTA", bank = ["AACCGGTA"]
Output: 1


Example 2:

Input: start = "AACCGGTT", end = "AAACGGTA", bank = ["AACCGGTA","AACCGCTA","AAACGGTA"]
Output: 2


Example 3:

Input: start = "AAAAACCC", end = "AACCCCCC", bank = ["AAAACCCC","AAACCCCC","AACCCCCC"]
Output: 3


Constraints:

start.length == 8
end.length == 8
0 <= bank.length <= 10
bank[i].length == 8
start, end, and bank[i] consist of only the characters ['A', 'C', 'G', 'T'].
2022-11-03
2131. Longest Palindrome by Concatenating Two Letter Words

Topic: Array, Hash Table, String, Greedy, Counting
Difficulty: Medium

Problem:
You are given an array of strings words. Each element of words consists of two lowercase English letters.

Create the longest possible palindrome by selecting some elements from words and concatenating them in any order. Each element can be selected at most once.

Return the length of the longest palindrome that you can create. If it is impossible to create any palindrome, return 0.

A palindrome is a string that reads the same forward and backward.

Example 1:

Input: words = ["lc","cl","gg"]
Output: 6
Explanation: One longest palindrome is "lc" + "gg" + "cl" = "lcggcl", of length 6.
Note that "clgglc" is another longest palindrome that can be created.


Example 2:

Input: words = ["ab","ty","yt","lc","cl","ab"]
Output: 8
Explanation: One longest palindrome is "ty" + "lc" + "cl" + "yt" = "tylcclyt", of length 8.
Note that "lcyttycl" is another longest palindrome that can be created.


Example 3:

Input: words = ["cc","ll","xx"]
Output: 2
Explanation: One longest palindrome is "cc", of length 2.
Note that "ll" is another longest palindrome that can be created, and so is "xx".


Constraints:

1 <= words.length <= 10^5
words[i].length == 2
words[i] consists of lowercase English letters.
2022-11-04
345. Reverse Vowels of a String

Topic: Two Pointers, String
Difficulty: Easy

Problem:
Given a string s, reverse only all the vowels in the string and return it.

The vowels are 'a', 'e', 'i', 'o', and 'u', and they can appear in both lower and upper cases, more than once.

Example 1:

Input: s = "hello"
Output: "holle"


Example 2:

Input: s = "leetcode"
Output: "leotcede"


Constraints:

1 <= s.length <= 3 * 10^5
s consist of printable ASCII characters.
2022-11-05
212. Word Search II

Topic: Array, String, Backtracking, Trie, Matrix
Difficulty: Hard

Problem:
Given an m x n board of characters and a list of strings words, return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

Image: https://assets.leetcode.com/uploads/2020/11/07/search1.jpg

Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]


Example 2:

Image: https://assets.leetcode.com/uploads/2020/11/07/search2.jpg

Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []


Constraints:

m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j] is a lowercase English letter.
1 <= words.length <= 3 * 10^4
1 <= words[i].length <= 10
words[i] consists of lowercase English letters.
• All the strings of words are unique.
2022-11-06
899. Orderly Queue

Topic: Math, String, Sorting
Difficulty: Hard

Problem:
You are given a string s and an integer k. You can choose one of the first k letters of s and append it at the end of the string..

Return the lexicographically smallest string you could have after applying the mentioned step any number of moves.

Example 1:

Input: s = "cba", k = 1
Output: "acb"
Explanation:
In the first move, we move the 1^st character 'c' to the end, obtaining the string "bac".
In the second move, we move the 1^st character 'b' to the end, obtaining the final result "acb".


Example 2:

Input: s = "baaca", k = 3
Output: "aaabc"
Explanation:
In the first move, we move the 1^st character 'b' to the end, obtaining the string "aacab".
In the second move, we move the 3^rd character 'c' to the end, obtaining the final result "aaabc".


Constraints:

1 <= k <= s.length <= 1000
s consist of lowercase English letters.
2022-11-07
1323. Maximum 69 Number

Topic: Math, Greedy
Difficulty: Easy

Problem:
You are given a positive integer num consisting only of digits 6 and 9.

Return the maximum number you can get by changing at most one digit (6 becomes 9, and 9 becomes 6).

Example 1:

Input: num = 9669
Output: 9969
Explanation:
Changing the first digit results in 6669.
Changing the second digit results in 9969.
Changing the third digit results in 9699.
Changing the fourth digit results in 9666.
The maximum number is 9969.


Example 2:

Input: num = 9996
Output: 9999
Explanation: Changing the last digit 6 to 9 results in the maximum number.


Example 3:

Input: num = 9999
Output: 9999
Explanation: It is better not to apply any change.


Constraints:

1 <= num <= 10^4
num consists of only 6 and 9 digits.
2022-11-08
1544. Make The String Great

Topic: String, Stack
Difficulty: Easy

Problem:
Given a string s of lower and upper case English letters.

A good string is a string which doesn't have two adjacent characters s[i] and s[i + 1] where:

0 <= i <= s.length - 2
s[i] is a lower-case letter and s[i + 1] is the same letter but in upper-case or vice-versa.

To make the string good, you can choose two adjacent characters that make the string bad and remove them. You can keep doing this until the string becomes good.

Return the string after making it good. The answer is guaranteed to be unique under the given constraints.

Notice that an empty string is also good.

Example 1:

Input: s = "leEeetcode"
Output: "leetcode"
Explanation: In the first step, either you choose i = 1 or i = 2, both will result "leEeetcode" to be reduced to "leetcode".


Example 2:

Input: s = "abBAcC"
Output: ""
Explanation: We have many possible scenarios, and all lead to the same answer. For example:
"abBAcC" --> "aAcC" --> "cC" --> ""
"abBAcC" --> "abBA" --> "aA" --> ""


Example 3:

Input: s = "s"
Output: "s"


Constraints:

1 <= s.length <= 100
s contains only lower and upper case English letters.
2022-11-09
901. Online Stock Span

Topic: Stack, Design, Monotonic Stack, Data Stream
Difficulty: Medium

Problem:
Design an algorithm that collects daily price quotes for some stock and returns the span of that stock's price for the current day.

The span of the stock's price today is defined as the maximum number of consecutive days (starting from today and going backward) for which the stock price was less than or equal to today's price.

• For example, if the price of a stock over the next 7 days were [100,80,60,70,60,75,85], then the stock spans would be [1,1,1,2,1,4,6].

Implement the StockSpanner class:

StockSpanner() Initializes the object of the class.
int next(int price) Returns the span of the stock's price given that today's price is price.

Example 1:

Input
["StockSpanner", "next", "next", "next", "next", "next", "next", "next"]
[[], [100], [80], [60], [70], [60], [75], [85]]
Output
[null, 1, 1, 1, 2, 1, 4, 6]

Explanation
StockSpanner stockSpanner = new StockSpanner();
stockSpanner.next(100); // return 1
stockSpanner.next(80); // return 1
stockSpanner.next(60); // return 1
stockSpanner.next(70); // return 2
stockSpanner.next(60); // return 1
stockSpanner.next(75); // return 4, because the last 4 prices (including today's price of 75) were less than or equal to today's price.
stockSpanner.next(85); // return 6


Constraints:

1 <= price <= 10^5
• At most 10^4 calls will be made to next.
2022-11-10
1047. Remove All Adjacent Duplicates In String

Topic: String, Stack
Difficulty: Easy

Problem:
You are given a string s consisting of lowercase English letters. A duplicate removal consists of choosing two adjacent and equal letters and removing them.

We repeatedly make duplicate removals on s until we no longer can.

Return the final string after all such duplicate removals have been made. It can be proven that the answer is unique.

Example 1:

Input: s = "abbaca"
Output: "ca"
Explanation:
For example, in "abbaca" we could remove "bb" since the letters are adjacent and equal, and this is the only possible move. The result of this move is that the string is "aaca", of which only "aa" is possible, so the final string is "ca".


Example 2:

Input: s = "azxxzy"
Output: "ay"


Constraints:

1 <= s.length <= 10^5
s consists of lowercase English letters.
2022-11-11
26. Remove Duplicates from Sorted Array

Topic: Array, Two Pointers
Difficulty: Easy

Problem:
Given an integer array nums sorted in non-decreasing order, remove the duplicates in-place such that each unique element appears only once. The relative order of the elements should be kept the same.

Since it is impossible to change the length of the array in some languages, you must instead have the result be placed in the first part of the array nums. More formally, if there are k elements after removing the duplicates, then the first k elements of nums should hold the final result. It does not matter what you leave beyond the first k elements.

Return k after placing the final result in the first k slots of nums.

Do not allocate extra space for another array. You must do this by modifying the input array in-place with O(1) extra memory.

Custom Judge:

The judge will test your solution with the following code:

int[] nums = [...]; // Input array
int[] expectedNums = [...]; // The expected answer with correct length

int k = removeDuplicates(nums); // Calls your implementation

assert k == expectedNums.length;
for (int i = 0; i < k; i++) {
assert nums[i] == expectedNums[i];
}


If all assertions pass, then your solution will be accepted.

Example 1:

Input: nums = [1,1,2]
Output: 2, nums = [1,2,_]
Explanation: Your function should return k = 2, with the first two elements of nums being 1 and 2 respectively.
It does not matter what you leave beyond the returned k (hence they are underscores).


Example 2:

Input: nums = [0,0,1,1,1,2,2,3,3,4]
Output: 5, nums = [0,1,2,3,4,_,_,_,_,_]
Explanation: Your function should return k = 5, with the first five elements of nums being 0, 1, 2, 3, and 4 respectively.
It does not matter what you leave beyond the returned k (hence they are underscores).


Constraints:

1 <= nums.length <= 3 * 10^4
-100 <= nums[i] <= 100
nums is sorted in non-decreasing order.
2022-11-12
295. Find Median from Data Stream

Topic: Two Pointers, Design, Sorting, Heap (Priority Queue), Data Stream
Difficulty: Hard

Problem:
The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value, and the median is the mean of the two middle values.

• For example, for arr = [2,3,4], the median is 3.
• For example, for arr = [2,3], the median is (2 + 3) / 2 = 2.5.

Implement the MedianFinder class:

MedianFinder() initializes the MedianFinder object.
void addNum(int num) adds the integer num from the data stream to the data structure.
double findMedian() returns the median of all elements so far. Answers within 10^-5 of the actual answer will be accepted.

Example 1:

Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output
[null, null, null, 1.5, null, 2.0]

Explanation
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0


Constraints:

-10^5 <= num <= 10^5
• There will be at least one element in the data structure before calling findMedian.
• At most 5 * 10^4 calls will be made to addNum and findMedian.

Follow up:

• If all integer numbers from the stream are in the range [0, 100], how would you optimize your solution?
• If 99% of all integer numbers from the stream are in the range [0, 100], how would you optimize your solution?