Leetcode Question of Today
70 subscribers
470 links
Send Question of Today from Leetcode everyday at 0:00 (UTC)
Download Telegram
2023-12-10
867. Transpose Matrix

Topic: Array, Matrix, Simulation
Difficulty: Easy

Problem:
Given a 2D integer array matrix, return the transpose of matrix.

The transpose of a matrix is the matrix flipped over its main diagonal, switching the matrix's row and column indices.

Image: https://assets.leetcode.com/uploads/2021/02/10/hint_transpose.png

Example 1:

Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [[1,4,7],[2,5,8],[3,6,9]]


Example 2:

Input: matrix = [[1,2,3],[4,5,6]]
Output: [[1,4],[2,5],[3,6]]


Constraints:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 1000
1 <= m * n <= 10^5
-10^9 <= matrix[i][j] <= 10^9
2023-12-11
1287. Element Appearing More Than 25% In Sorted Array

Topic: Array
Difficulty: Easy

Problem:
Given an integer array sorted in non-decreasing order, there is exactly one integer in the array that occurs more than 25% of the time, return that integer.

Example 1:

Input: arr = [1,2,2,6,6,6,6,7,10]
Output: 6


Example 2:

Input: arr = [1,1]
Output: 1


Constraints:

1 <= arr.length <= 10^4
0 <= arr[i] <= 10^5
2023-12-12
1464. Maximum Product of Two Elements in an Array

Topic: Array, Sorting, Heap (Priority Queue)
Difficulty: Easy

Problem:
Given the array of integers nums, you will choose two different indices i and j of that array. Return the maximum value of (nums[i]-1)*(nums[j]-1).

Example 1:

Input: nums = [3,4,5,2]
Output: 12
Explanation: If you choose the indices i=1 and j=2 (indexed from 0), you will get the maximum value, that is, (nums[1]-1)*(nums[2]-1) = (4-1)*(5-1) = 3*4 = 12.


Example 2:

Input: nums = [1,5,4,5]
Output: 16
Explanation: Choosing the indices i=1 and j=3 (indexed from 0), you will get the maximum value of (5-1)*(5-1) = 16.


Example 3:

Input: nums = [3,7]
Output: 12


Constraints:

2 <= nums.length <= 500
1 <= nums[i] <= 10^3
2023-12-13
1582. Special Positions in a Binary Matrix

Topic: Array, Matrix
Difficulty: Easy

Problem:
Given an m x n binary matrix mat, return the number of special positions in mat.

A position (i, j) is called special if mat[i][j] == 1 and all other elements in row i and column j are 0 (rows and columns are 0-indexed).

Example 1:

Image: https://assets.leetcode.com/uploads/2021/12/23/special1.jpg

Input: mat = [[1,0,0],[0,0,1],[1,0,0]]
Output: 1
Explanation: (1, 2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.


Example 2:

Image: https://assets.leetcode.com/uploads/2021/12/24/special-grid.jpg

Input: mat = [[1,0,0],[0,1,0],[0,0,1]]
Output: 3
Explanation: (0, 0), (1, 1) and (2, 2) are special positions.


Constraints:

m == mat.length
n == mat[i].length
1 <= m, n <= 100
mat[i][j] is either 0 or 1.
2023-12-14
2482. Difference Between Ones and Zeros in Row and Column

Topic: Array, Matrix, Simulation
Difficulty: Medium

Problem:
You are given a 0-indexed m x n binary matrix grid.

A 0-indexed m x n difference matrix diff is created with the following procedure:

• Let the number of ones in the i^th row be onesRow_i.
• Let the number of ones in the j^th column be onesCol_j.
• Let the number of zeros in the i^th row be zerosRow_i.
• Let the number of zeros in the j^th column be zerosCol_j.
diff[i][j] = onesRow_i + onesCol_j - zerosRow_i - zerosCol_j

Return the difference matrix diff.

Example 1:

Image: https://assets.leetcode.com/uploads/2022/11/06/image-20221106171729-5.png

Input: grid = [[0,1,1],[1,0,1],[0,0,1]]
Output: [[0,0,4],[0,0,4],[-2,-2,2]]
Explanation:
- diff[0][0] = onesRow_0 + onesCol_0 - zerosRow_0 - zerosCol_0 = 2 + 1 - 1 - 2 = 0
- diff[0][1] = onesRow_0 + onesCol_1 - zerosRow_0 - zerosCol_1 = 2 + 1 - 1 - 2 = 0
- diff[0][2] = onesRow_0 + onesCol_2 - zerosRow_0 - zerosCol_2 = 2 + 3 - 1 - 0 = 4
- diff[1][0] = onesRow_1 + onesCol_0 - zerosRow_1 - zerosCol_0 = 2 + 1 - 1 - 2 = 0
- diff[1][1] = onesRow_1 + onesCol_1 - zerosRow_1 - zerosCol_1 = 2 + 1 - 1 - 2 = 0
- diff[1][2] = onesRow_1 + onesCol_2 - zerosRow_1 - zerosCol_2 = 2 + 3 - 1 - 0 = 4
- diff[2][0] = onesRow_2 + onesCol_0 - zerosRow_2 - zerosCol_0 = 1 + 1 - 2 - 2 = -2
- diff[2][1] = onesRow_2 + onesCol_1 - zerosRow_2 - zerosCol_1 = 1 + 1 - 2 - 2 = -2
- diff[2][2] = onesRow_2 + onesCol_2 - zerosRow_2 - zerosCol_2 = 1 + 3 - 2 - 0 = 2


Example 2:

Image: https://assets.leetcode.com/uploads/2022/11/06/image-20221106171747-6.png

Input: grid = [[1,1,1],[1,1,1]]
Output: [[5,5,5],[5,5,5]]
Explanation:
- diff[0][0] = onesRow_0 + onesCol_0 - zerosRow_0 - zerosCol_0 = 3 + 2 - 0 - 0 = 5
- diff[0][1] = onesRow_0 + onesCol_1 - zerosRow_0 - zerosCol_1 = 3 + 2 - 0 - 0 = 5
- diff[0][2] = onesRow_0 + onesCol_2 - zerosRow_0 - zerosCol_2 = 3 + 2 - 0 - 0 = 5
- diff[1][0] = onesRow_1 + onesCol_0 - zerosRow_1 - zerosCol_0 = 3 + 2 - 0 - 0 = 5
- diff[1][1] = onesRow_1 + onesCol_1 - zerosRow_1 - zerosCol_1 = 3 + 2 - 0 - 0 = 5
- diff[1][2] = onesRow_1 + onesCol_2 - zerosRow_1 - zerosCol_2 = 3 + 2 - 0 - 0 = 5


Constraints:

m == grid.length
n == grid[i].length
1 <= m, n <= 10^5
1 <= m * n <= 10^5
grid[i][j] is either 0 or 1.
2023-12-15
1436. Destination City

Topic: Hash Table, String
Difficulty: Easy

Problem:
You are given the array paths, where paths[i] = [cityA_i, cityB_i] means there exists a direct path going from cityA_i to cityB_i. Return the destination city, that is, the city without any path outgoing to another city.

It is guaranteed that the graph of paths forms a line without any loop, therefore, there will be exactly one destination city.

Example 1:

Input: paths = [["London","New York"],["New York","Lima"],["Lima","Sao Paulo"]]
Output: "Sao Paulo"
Explanation: Starting at "London" city you will reach "Sao Paulo" city which is the destination city. Your trip consist of: "London" -> "New York" -> "Lima" -> "Sao Paulo".


Example 2:

Input: paths = [["B","C"],["D","B"],["C","A"]]
Output: "A"
Explanation: All possible trips are: 
"D" -> "B" -> "C" -> "A". 
"B" -> "C" -> "A". 
"C" -> "A". 
"A". 
Clearly the destination city is "A".


Example 3:

Input: paths = [["A","Z"]]
Output: "Z"


Constraints:

1 <= paths.length <= 100
paths[i].length == 2
1 <= cityA_i.length, cityB_i.length <= 10
cityA_i != cityB_i
• All strings consist of lowercase and uppercase English letters and the space character.
2023-12-16
242. Valid Anagram

Topic: Hash Table, String, Sorting
Difficulty: Easy

Problem:
Given two strings s and t, return true if t is an anagram of s, and false otherwise.

An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.

Example 1:

Input: s = "anagram", t = "nagaram"
Output: true


Example 2:

Input: s = "rat", t = "car"
Output: false


Constraints:

1 <= s.length, t.length <= 5 * 10^4
s and t consist of lowercase English letters.

Follow up: What if the inputs contain Unicode characters? How would you adapt your solution to such a case?
2023-12-17
2353. Design a Food Rating System

Topic: Hash Table, Design, Heap (Priority Queue), Ordered Set
Difficulty: Medium

Problem:
Design a food rating system that can do the following:

• Modify the rating of a food item listed in the system.
• Return the highest-rated food item for a type of cuisine in the system.

Implement the FoodRatings class:

FoodRatings(String[] foods, String[] cuisines, int[] ratings) Initializes the system. The food items are described by foods, cuisines and ratings, all of which have a length of n.
foods[i] is the name of the i^th food,
cuisines[i] is the type of cuisine of the i^th food, and
ratings[i] is the initial rating of the i^th food.
void changeRating(String food, int newRating) Changes the rating of the food item with the name food.
String highestRated(String cuisine) Returns the name of the food item that has the highest rating for the given type of cuisine. If there is a tie, return the item with the lexicographically smaller name.

Note that a string x is lexicographically smaller than string y if x comes before y in dictionary order, that is, either x is a prefix of y, or if i is the first position such that x[i] != y[i], then x[i] comes before y[i] in alphabetic order.

Example 1:

Input
["FoodRatings", "highestRated", "highestRated", "changeRating", "highestRated", "changeRating", "highestRated"]
[[["kimchi", "miso", "sushi", "moussaka", "ramen", "bulgogi"], ["korean", "japanese", "japanese", "greek", "japanese", "korean"], [9, 12, 8, 15, 14, 7]], ["korean"], ["japanese"], ["sushi", 16], ["japanese"], ["ramen", 16], ["japanese"]]
Output
[null, "kimchi", "ramen", null, "sushi", null, "ramen"]

Explanation
FoodRatings foodRatings = new FoodRatings(["kimchi", "miso", "sushi", "moussaka", "ramen", "bulgogi"], ["korean", "japanese", "japanese", "greek", "japanese", "korean"], [9, 12, 8, 15, 14, 7]);
foodRatings.highestRated("korean"); // return "kimchi"
// "kimchi" is the highest rated korean food with a rating of 9.
foodRatings.highestRated("japanese"); // return "ramen"
// "ramen" is the highest rated japanese food with a rating of 14.
foodRatings.changeRating("sushi", 16); // "sushi" now has a rating of 16.
foodRatings.highestRated("japanese"); // return "sushi"
// "sushi" is the highest rated japanese food with a rating of 16.
foodRatings.changeRating("ramen", 16); // "ramen" now has a rating of 16.
foodRatings.highestRated("japanese"); // return "ramen"
// Both "sushi" and "ramen" have a rating of 16.
// However, "ramen" is lexicographically smaller than "sushi".


Constraints:

1 <= n <= 2 * 10^4
n == foods.length == cuisines.length == ratings.length
1 <= foods[i].length, cuisines[i].length <= 10
foods[i], cuisines[i] consist of lowercase English letters.
1 <= ratings[i] <= 10^8
• All the strings in foods are distinct.
food will be the name of a food item in the system across all calls to changeRating.
cuisine will be a type of cuisine of at least one food item in the system across all calls to highestRated.
• At most 2 * 10^4 calls in total will be made to changeRating and highestRated.
2023-12-18
1913. Maximum Product Difference Between Two Pairs

Topic: Array, Sorting
Difficulty: Easy

Problem:
The product difference between two pairs (a, b) and (c, d) is defined as (a * b) - (c * d).

• For example, the product difference between (5, 6) and (2, 7) is (5 * 6) - (2 * 7) = 16.

Given an integer array nums, choose four distinct indices w, x, y, and z such that the product difference between pairs (nums[w], nums[x]) and (nums[y], nums[z]) is maximized.

Return the maximum such product difference.

Example 1:

Input: nums = [5,6,2,7,4]
Output: 34
Explanation: We can choose indices 1 and 3 for the first pair (6, 7) and indices 2 and 4 for the second pair (2, 4).
The product difference is (6 * 7) - (2 * 4) = 34.


Example 2:

Input: nums = [4,2,5,9,7,4,8]
Output: 64
Explanation: We can choose indices 3 and 6 for the first pair (9, 8) and indices 1 and 5 for the second pair (2, 4).
The product difference is (9 * 8) - (2 * 4) = 64.


Constraints:

4 <= nums.length <= 10^4
1 <= nums[i] <= 10^4
2023-12-19
661. Image Smoother

Topic: Array, Matrix
Difficulty: Easy

Problem:
An image smoother is a filter of the size 3 x 3 that can be applied to each cell of an image by rounding down the average of the cell and the eight surrounding cells (i.e., the average of the nine cells in the blue smoother). If one or more of the surrounding cells of a cell is not present, we do not consider it in the average (i.e., the average of the four cells in the red smoother).

Image: https://assets.leetcode.com/uploads/2021/05/03/smoother-grid.jpg

Given an m x n integer matrix img representing the grayscale of an image, return the image after applying the smoother on each cell of it.

Example 1:

Image: https://assets.leetcode.com/uploads/2021/05/03/smooth-grid.jpg

Input: img = [[1,1,1],[1,0,1],[1,1,1]]
Output: [[0,0,0],[0,0,0],[0,0,0]]
Explanation:
For the points (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the points (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0


Example 2:

Image: https://assets.leetcode.com/uploads/2021/05/03/smooth2-grid.jpg

Input: img = [[100,200,100],[200,50,200],[100,200,100]]
Output: [[137,141,137],[141,138,141],[137,141,137]]
Explanation:
For the points (0,0), (0,2), (2,0), (2,2): floor((100+200+200+50)/4) = floor(137.5) = 137
For the points (0,1), (1,0), (1,2), (2,1): floor((200+200+50+200+100+100)/6) = floor(141.666667) = 141
For the point (1,1): floor((50+200+200+200+200+100+100+100+100)/9) = floor(138.888889) = 138


Constraints:

m == img.length
n == img[i].length
1 <= m, n <= 200
0 <= img[i][j] <= 255
2023-12-20
2706. Buy Two Chocolates

Topic: Array, Sorting
Difficulty: Easy

Problem:
You are given an integer array prices representing the prices of various chocolates in a store. You are also given a single integer money, which represents your initial amount of money.

You must buy exactly two chocolates in such a way that you still have some non-negative leftover money. You would like to minimize the sum of the prices of the two chocolates you buy.

Return the amount of money you will have leftover after buying the two chocolates. If there is no way for you to buy two chocolates without ending up in debt, return money. Note that the leftover must be non-negative.

Example 1:

Input: prices = [1,2,2], money = 3
Output: 0
Explanation: Purchase the chocolates priced at 1 and 2 units respectively. You will have 3 - 3 = 0 units of money afterwards. Thus, we return 0.


Example 2:

Input: prices = [3,2,3], money = 3
Output: 3
Explanation: You cannot buy 2 chocolates without going in debt, so we return 3.


Constraints:

2 <= prices.length <= 50
1 <= prices[i] <= 100
1 <= money <= 100
2023-12-21
1637. Widest Vertical Area Between Two Points Containing No Points

Topic: Array, Sorting
Difficulty: Medium

Problem:
Given n points on a 2D plane where points[i] = [x_i, y_i], Return the widest vertical area between two points such that no points are inside the area.

A vertical area is an area of fixed-width extending infinitely along the y-axis (i.e., infinite height). The widest vertical area is the one with the maximum width.

Note that points on the edge of a vertical area are not considered included in the area.

Example 1:

Image: https://assets.leetcode.com/uploads/2020/09/19/points3.png


Input: points = [[8,7],[9,9],[7,4],[9,7]]
Output: 1
Explanation: Both the red and the blue area are optimal.


Example 2:

Input: points = [[3,1],[9,0],[1,0],[1,4],[5,3],[8,8]]
Output: 3


Constraints:

n == points.length
2 <= n <= 10^5
points[i].length == 2
0 <= x_i, y_i <= 10^9
2023-12-22
1422. Maximum Score After Splitting a String

Topic: String
Difficulty: Easy

Problem:
Given a string s of zeros and ones, return the maximum score after splitting the string into two non-empty substrings (i.e. left substring and right substring).

The score after splitting a string is the number of zeros in the left substring plus the number of ones in the right substring.

Example 1:

Input: s = "011101"
Output: 5
Explanation:
All possible ways of splitting s into two non-empty substrings are:
left = "0" and right = "11101", score = 1 + 4 = 5
left = "01" and right = "1101", score = 1 + 3 = 4
left = "011" and right = "101", score = 1 + 2 = 3
left = "0111" and right = "01", score = 1 + 1 = 2
left = "01110" and right = "1", score = 2 + 1 = 3


Example 2:

Input: s = "00111"
Output: 5
Explanation: When left = "00" and right = "111", we get the maximum score = 2 + 3 = 5


Example 3:

Input: s = "1111"
Output: 3


Constraints:

2 <= s.length <= 500
• The string s consists of characters '0' and '1' only.
2023-12-23
1496. Path Crossing

Topic: Hash Table, String
Difficulty: Easy

Problem:
Given a string path, where path[i] = 'N', 'S', 'E' or 'W', each representing moving one unit north, south, east, or west, respectively. You start at the origin (0, 0) on a 2D plane and walk on the path specified by path.

Return true if the path crosses itself at any point, that is, if at any time you are on a location you have previously visited. Return false otherwise.

Example 1:

Image: https://assets.leetcode.com/uploads/2020/06/10/screen-shot-2020-06-10-at-123929-pm.png

Input: path = "NES"
Output: false
Explanation: Notice that the path doesn't cross any point more than once.


Example 2:

Image: https://assets.leetcode.com/uploads/2020/06/10/screen-shot-2020-06-10-at-123843-pm.png

Input: path = "NESWW"
Output: true
Explanation: Notice that the path visits the origin twice.


Constraints:

1 <= path.length <= 10^4
path[i] is either 'N', 'S', 'E', or 'W'.
2023-12-24
1758. Minimum Changes To Make Alternating Binary String

Topic: String
Difficulty: Easy

Problem:
You are given a string s consisting only of the characters '0' and '1'. In one operation, you can change any '0' to '1' or vice versa.

The string is called alternating if no two adjacent characters are equal. For example, the string "010" is alternating, while the string "0100" is not.

Return the minimum number of operations needed to make s alternating.

Example 1:

Input: s = "0100"
Output: 1
Explanation: If you change the last character to '1', s will be "0101", which is alternating.


Example 2:

Input: s = "10"
Output: 0
Explanation: s is already alternating.


Example 3:

Input: s = "1111"
Output: 2
Explanation: You need two operations to reach "0101" or "1010".


Constraints:

1 <= s.length <= 10^4
s[i] is either '0' or '1'.
2023-12-25
91. Decode Ways

Topic: String, Dynamic Programming
Difficulty: Medium

Problem:
A message containing letters from A-Z can be encoded into numbers using the following mapping:

'A' -> "1"
'B' -> "2"
...
'Z' -> "26"


To decode an encoded message, all the digits must be grouped then mapped back into letters using the reverse of the mapping above (there may be multiple ways). For example, "11106" can be mapped into:

"AAJF" with the grouping (1 1 10 6)
"KJF" with the grouping (11 10 6)

Note that the grouping (1 11 06) is invalid because "06" cannot be mapped into 'F' since "6" is different from "06".

Given a string s containing only digits, return the number of ways to decode it.

The test cases are generated so that the answer fits in a 32-bit integer.

Example 1:

Input: s = "12"
Output: 2
Explanation: "12" could be decoded as "AB" (1 2) or "L" (12).


Example 2:

Input: s = "226"
Output: 3
Explanation: "226" could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6).


Example 3:

Input: s = "06"
Output: 0
Explanation: "06" cannot be mapped to "F" because of the leading zero ("6" is different from "06").


Constraints:

1 <= s.length <= 100
s contains only digits and may contain leading zero(s).
2023-12-26
1155. Number of Dice Rolls With Target Sum

Topic: Dynamic Programming
Difficulty: Medium

Problem:
You have n dice, and each die has k faces numbered from 1 to k.

Given three integers n, k, and target, return the number of possible ways (out of the k^n total ways) to roll the dice, so the sum of the face-up numbers equals target. Since the answer may be too large, return it modulo 10^9 + 7.

Example 1:

Input: n = 1, k = 6, target = 3
Output: 1
Explanation: You throw one die with 6 faces.
There is only one way to get a sum of 3.


Example 2:

Input: n = 2, k = 6, target = 7
Output: 6
Explanation: You throw two dice, each with 6 faces.
There are 6 ways to get a sum of 7: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1.


Example 3:

Input: n = 30, k = 30, target = 500
Output: 222616187
Explanation: The answer must be returned modulo 10^9 + 7.


Constraints:

1 <= n, k <= 30
1 <= target <= 1000
2023-12-27
1578. Minimum Time to Make Rope Colorful

Topic: Array, String, Dynamic Programming, Greedy
Difficulty: Medium

Problem:
Alice has n balloons arranged on a rope. You are given a 0-indexed string colors where colors[i] is the color of the i^th balloon.

Alice wants the rope to be colorful. She does not want two consecutive balloons to be of the same color, so she asks Bob for help. Bob can remove some balloons from the rope to make it colorful. You are given a 0-indexed integer array neededTime where neededTime[i] is the time (in seconds) that Bob needs to remove the i^th balloon from the rope.

Return the minimum time Bob needs to make the rope colorful.

Example 1:

Image: https://assets.leetcode.com/uploads/2021/12/13/ballon1.jpg

Input: colors = "abaac", neededTime = [1,2,3,4,5]
Output: 3
Explanation: In the above image, 'a' is blue, 'b' is red, and 'c' is green.
Bob can remove the blue balloon at index 2. This takes 3 seconds.
There are no longer two consecutive balloons of the same color. Total time = 3.


Example 2:

Image: https://assets.leetcode.com/uploads/2021/12/13/balloon2.jpg

Input: colors = "abc", neededTime = [1,2,3]
Output: 0
Explanation: The rope is already colorful. Bob does not need to remove any balloons from the rope.


Example 3:

Image: https://assets.leetcode.com/uploads/2021/12/13/balloon3.jpg

Input: colors = "aabaa", neededTime = [1,2,3,4,1]
Output: 2
Explanation: Bob will remove the ballons at indices 0 and 4. Each ballon takes 1 second to remove.
There are no longer two consecutive balloons of the same color. Total time = 1 + 1 = 2.


Constraints:

n == colors.length == neededTime.length
1 <= n <= 10^5
1 <= neededTime[i] <= 10^4
colors contains only lowercase English letters.
2023-12-29
1335. Minimum Difficulty of a Job Schedule

Topic: Array, Dynamic Programming
Difficulty: Hard

Problem:
You want to schedule a list of jobs in d days. Jobs are dependent (i.e To work on the i^th job, you have to finish all the jobs j where 0 <= j < i).

You have to finish at least one task every day. The difficulty of a job schedule is the sum of difficulties of each day of the d days. The difficulty of a day is the maximum difficulty of a job done on that day.

You are given an integer array jobDifficulty and an integer d. The difficulty of the i^th job is jobDifficulty[i].

Return the minimum difficulty of a job schedule. If you cannot find a schedule for the jobs return -1.

Example 1:

Image: https://assets.leetcode.com/uploads/2020/01/16/untitled.png

Input: jobDifficulty = [6,5,4,3,2,1], d = 2
Output: 7
Explanation: First day you can finish the first 5 jobs, total difficulty = 6.
Second day you can finish the last job, total difficulty = 1.
The difficulty of the schedule = 6 + 1 = 7


Example 2:

Input: jobDifficulty = [9,9,9], d = 4
Output: -1
Explanation: If you finish a job per day you will still have a free day. you cannot find a schedule for the given jobs.


Example 3:

Input: jobDifficulty = [1,1,1], d = 3
Output: 3
Explanation: The schedule is one job per day. total difficulty will be 3.


Constraints:

1 <= jobDifficulty.length <= 300
0 <= jobDifficulty[i] <= 1000
1 <= d <= 10
2023-12-30
1897. Redistribute Characters to Make All Strings Equal

Topic: Hash Table, String, Counting
Difficulty: Easy

Problem:
You are given an array of strings words (0-indexed).

In one operation, pick two distinct indices i and j, where words[i] is a non-empty string, and move any character from words[i] to any position in words[j].

Return true if you can make every string in words equal using any number of operations, and false otherwise.

Example 1:

Input: words = ["abc","aabc","bc"]
Output: true
Explanation: Move the first 'a' in words[1] to the front of words[2],
to make words[1] = "abc" and words[2] = "abc".
All the strings are now equal to "abc", so return true.


Example 2:

Input: words = ["ab","a"]
Output: false
Explanation: It is impossible to make all the strings equal using the operation.


Constraints:

1 <= words.length <= 100
1 <= words[i].length <= 100
words[i] consists of lowercase English letters.
2023-12-31
1624. Largest Substring Between Two Equal Characters

Topic: Hash Table, String
Difficulty: Easy

Problem:
Given a string s, return the length of the longest substring between two equal characters, excluding the two characters. If there is no such substring return -1.

A substring is a contiguous sequence of characters within a string.

Example 1:

Input: s = "aa"
Output: 0
Explanation: The optimal substring here is an empty substring between the two 'a's.


Example 2:

Input: s = "abca"
Output: 2
Explanation: The optimal substring here is "bc".


Example 3:

Input: s = "cbzxy"
Output: -1
Explanation: There are no characters that appear twice in s.


Constraints:

1 <= s.length <= 300
s contains only lowercase English letters.