Java for Beginner
778 subscribers
756 photos
220 videos
12 files
1.28K links
Канал от новичков для новичков!
Изучайте Java вместе с нами!
Здесь мы обмениваемся опытом и постоянно изучаем что-то новое!

Наш YouTube канал - https://www.youtube.com/@Java_Beginner-Dev

Наш канал на RUTube - https://rutube.ru/channel/37896292/
Download Telegram
Практические шаблоны интеграции (patterns)

1) BFF (Backend-for-Frontend) — GraphQL на фронте + gRPC внутри

GraphQL агрегатор (BFF) вызывает gRPC сервисы, комбинирует ответы и отдаёт клиенту.
Позволяет хранить оптимизированные внутр. контракты и независимую клиентскую схему.


2) API Gateway с трансляцией

gRPC Gateway (прокси) экспонирует REST/JSON поверх gRPC-сервисов или наоборот.
Полезно для совместимости с внешними клиентами.


3) Dual API

Предоставлять одновременно REST (для публичного потребления) и GraphQL (для интерактивного фронта).
Поддерживать один источник данных и разные фасады.

4) Persisted Queries + CDN

Для GraphQL: генерировать хэш-запросов (operationId) и кэшировать на CDN; уменьшает payload и риск DoS.


Частые ошибки

Выбор gRPC для публичного браузерного API без gRPC-Web — приведёт к дополнительной сложности (нужен прокси).
GraphQL без контроля сложности — клиенты могут генерировать тяжёлые запросы (глубокая вложенность). Нужно ставить лимиты.
REST для сложной фронт-логики — приведёт к множеству эндпоинтов и оверхеду в клиенте.
Игнорирование кэширования в GraphQL — потеря преимуществ CDN/edge caching; нужен persisted queries или отдельные REST-эндпоинты для тяжелых ресурсов.



Чек-лист для принятия решения (практический)

Клиенты — браузеры? мобильные? сторонние интеграторы?
браузер/мобильный фронт → GraphQL выгоден;
сторонние сторонние потребители → REST предпочтителен (совместимость).

Нужен ли стриминг / двунаправленная связь?
да → gRPC;
нет → GraphQL/REST.


Высокая нагрузка внутри сети (RTT, пропускная способность)?
да → gRPC;

Требуется гибкость выбора полей клиентом и уменьшение запросов?
да → GraphQL;

Требуется простое кеширование через CDN/HTTP?
да → REST (или реализовать persisted queries для GraphQL).

Нужно строгая схема и codegen для многих языков?
gRPC или GraphQL (оба дают schema/codegen).


Рекомендованные архитектурные сочетания (рецепты)

Внутренние микросервисы (gRPC) + GraphQL BFF + браузерный фронт — оптимальный вариант для больших команд: скорость внутри, гибкость для фронтенда.
REST public API + GraphQL internal BFF for web clients — если нужно максимально простое публичное API, но гибкость для своих фронтенд-команд.
gRPC end-to-end — когда все клиенты контролируются и могут использовать gRPC (например, мобильный клиент с gRPC-Web или нативный клиент).


Пример архитектуры

Сценарий: крупное приложение с веб-клиентом и мобильными приложениями + множество микросервисов.
Внутренние микросервисы: общаются по gRPC (protobuf).
Aggregation Layer: GraphQL BFF. Он:
вызывает gRPC сервисы (stub-ы),
использует DataLoader / batching для борьбы с N+1,
кеширует часто запрашиваемые фрагменты,
реализует field-level авторизацию.
Фронтенд: запрашивает GraphQL; для критичных статических ресурсов (изображения) используется CDN.
Преимущество: фронтенд получает гибкий API, внутренние сервисы остаются быстрыми и типобезопасными.



#Java #middle #GraphQL
👍2
Глава 2. List — списки

Метод get

Доступ к элементам по индексу — это базовая операция, которая раскрывает фундаментальные различия в архитектуре различных реализаций List. В то время как некоторые реализации обеспечивают мгновенный доступ к любому элементу, другие требуют последовательного обхода для достижения целевой позиции. Это различие проистекает из компромисса между скоростью доступа, эффективностью модификаций и потреблением памяти, который каждая реализация решает по-своему.


ArrayList: мгновенный доступ через массив

ArrayList реализует список на основе динамического массива, что обеспечивает ему исключительную производительность при операциях доступа по индексу. Внутренняя структура ArrayList построена вокруг массива Object[], который служит непосредственным хранилищем элементов.

Эта архитектура предоставляет несколько ключевых преимуществ для операции get:
Прямая адресация через смещение в памяти
Константное время доступа к любому элементу
Высокая пространственная локальность, благоприятная для кэширования процессора
Минимальные накладные расходы на операцию доступа



Детальный процесс выполнения get(index)

Фаза валидации и проверки границ
Первым и обязательным шагом в выполнении метода get является проверка корректности запрошенного индекса:

Проверка диапазона:

Система убеждается, что указанный индекс находится в пределах от 0 (включительно) до текущего размера списка (исключительно). Эта проверка включает сравнение индекса с полем size ArrayList и при необходимости выброс исключения IndexOutOfBoundsException с информативным сообщением.

Валидация состояния:
Неявно проверяется, что внутренняя структура данных находится в консистентном состоянии и готова к операции чтения.

Фаза непосредственного доступа к элементу
После успешной валидации индекса происходит собственно извлечение элемента:

Вычисление позиции в массиве:
Поскольку ArrayList использует непрерывный блок памяти, позиция элемента вычисляется как прямое смещение в массиве. Для массива elementData и индекса i элемент находится точно в позиции elementData[i].

Извлечение значения:
Происходит чтение ссылки на объект из соответствующей позиции массива. Эта операция компилируется в одну машинную инструкцию доступа к памяти.

Возврат результата:
Найденный объект возвращается вызывающему коду. Если в указанной позиции хранится null, метод возвращает null без дополнительных проверок.

Отсутствие структурных изменений
Важной характеристикой операции get в ArrayList является то, что она не модифицирует внутреннюю структуру данных.

В отличие от операций добавления или удаления, get является read-only операцией, что означает:
Отсутствие необходимости в блокировках для thread-safe доступа (в read-only сценариях)
Нет модификации счетчика изменений (modCount)
Сохранение целостности внутреннего массива



Производительность и оптимизации

Временная сложность
Операция get в ArrayList имеет временную сложность O(1) в худшем случае. Это означает, что время доступа к первому, последнему или любому другому элементу практически идентично и не зависит от размера списка.

Влияние кэширования процессора
Благодаря непрерывному расположению элементов в памяти, ArrayList идеально использует принцип пространственной локальности:

Кэш-линии процессора:
Смежные элементы часто попадают в одну кэш-линию, что делает последовательный доступ чрезвычайно эффективным.

Prefetching:
Современные процессоры могут предсказывать и предзагружать следующие элементы массива, еще больше ускоряя последовательные операции доступа.

Оптимизации на уровне JVM

JIT-компиляция:
HotSpot JVM может агрессивно оптимизировать операции доступа к массиву, включая elimination bounds checking в некоторых сценариях.

Inlining:
Частые вызовы get могут быть inline-ированы, уменьшая overhead вызова метода.


#Java #для_новичков #beginner #List #ArrayList #LinkedList #get
👍2
LinkedList: последовательный доступ через цепочку узлов

Архитектурные основы связного списка
LinkedList реализует список на основе двусвязного списка, где каждый элемент хранится в отдельном узле, содержащем ссылки на данные, предыдущий и следующий узлы.

Эта архитектура fundamentally меняет механизм доступа к элементам:

Последовательный доступ вместо прямого
Линейная временная сложность доступа по индексу
Отсутствие преимуществ пространственной локальности
Дополнительные затраты на обход цепочки


Структура узла и организация данных
Каждый узел LinkedList содержит три ключевых компонента:
Node {
E item; // хранимый элемент
Node<E> next; // ссылка на следующий узел
Node<E> prev; // ссылка на предыдущий узел
}
Список поддерживает ссылки на первый (head) и последний (tail) узлы, а также счетчик размера.


Детальный процесс выполнения get(index)


Фаза валидации и стратегического выбора
Как и в ArrayList, первым шагом является проверка корректности индекса:

Проверка границ:
Убеждаются, что индекс находится в диапазоне [0, size-1].

Выбор стратегии обхода:
В зависимости от положения индекса выбирается оптимальная точка начала обхода:
Если индекс находится в первой половине списка (index < size / 2), обход начинается с головы (head)
Если индекс находится во второй половине, обход начинается с хвоста (tail)
Эта оптимизация уменьшает среднее количество шагов обхода с n/2 до n/4.


Фаза последовательного обхода
После выбора начальной точки начинается процесс пошагового перемещения по цепочке узлов:

Инициализация обхода:
Создается временная переменная-указатель, которая устанавливается на начальный узел (head или tail).

Последовательное перемещение:
Для каждого шага обхода:
Если движение от головы, указатель перемещается к следующему узлу (
node.next)
Если движение от хвоста, указатель перемещается к предыдущему узлу (node.prev)
Счетчик текущей позиции обновляется


Достижение целевой позиции:
Процесс продолжается до тех пор, пока текущая позиция не совпадет с запрошенным индексом.

Фаза извлечения и возврата результата
Когда целевой узел найден:

Извлечение элемента:
Из поля item целевого узла извлекается хранимый объект.

Возврат результата:
Объект возвращается вызывающему коду. Как и в ArrayList, если узел содержит null, возвращается null.


Производительность и характеристики доступа

Временная сложность
Операция get в LinkedList имеет временную сложность O(n) в худшем случае, где n — количество элементов в списке. Однако благодаря двунаправленному обходу средняя сложность составляет O(n/4) = O(n).

Зависимость от паттерна доступа
Худший случай:
Доступ к элементу в середине большого списка требует обхода примерно n/2 узлов.

Лучший случай:
Доступ к первому или последнему элементу требует всего одного шага.

Средний случай:
При равномерном распределении запросов среднее количество шагов составляет n/4.

Влияние на производительность

Отсутствие кэширования:
Из-за разрозненного расположения узлов в памяти отсутствуют преимущества кэширования процессора.

Overhead обхода:
Каждый шаг обхода требует разыменования ссылки и проверки условий, что создает дополнительную нагрузку.


#Java #для_новичков #beginner #List #ArrayList #LinkedList #get
👍3