Java for Beginner
746 subscribers
719 photos
202 videos
12 files
1.17K links
Канал от новичков для новичков!
Изучайте Java вместе с нами!
Здесь мы обмениваемся опытом и постоянно изучаем что-то новое!

Наш YouTube канал - https://www.youtube.com/@Java_Beginner-Dev

Наш канал на RUTube - https://rutube.ru/channel/37896292/
Download Telegram
Реактивное программирование

Подписка и жизненный цикл в Reactor: onNext, onError, onComplete

Reactor делает код декларативным — вы описываете поток событий, а не управляете ожиданиями вручную.
Но чтобы потоки "ожили", нужна подписка: это момент, когда издатель начинает передавать данные, а подписчик реагирует. Подписка и жизненный цикл в Reactor - это фундамент: без понимания, как срабатывают onNext (реакция на элемент), onError (обработка ошибки) и onComplete (завершение), ваши реактивные конвейеры останутся мёртвыми.
Представьте жизненный цикл как этапы реки: подписка — запуск потока, onNext — течение воды, onError — буря, onComplete — устье.


Подписка — это связь между издателем (Publisher, как Mono/Flux) и подписчиком (Subscriber). Она запускает поток данных асинхронно, без блокировок. Жизненный цикл определяет порядок событий: от старта до конца или ошибки. Это решает проблемы из первого поста — вместо callback-ада и ручных get(), вы получаете структурированные реакции. Всё построено на Reactive Streams API, с обратным давлением.


Подписка: запуск потока данных

В Reactor Mono или Flux — ленивые: они ничего не делают, пока не подпишетесь. Метод subscribe() — это триггер: он регистрирует подписчика и начинает передавать события (push, из поста 3).
Подписка асинхронна: после subscribe() код продолжается сразу, без ожидания завершения.


Базовые варианты subscribe():
subscribe(): без параметров — данные "проглатываются", но поток запускается. Полезно для fire-and-forget (запустил и забыл).
subscribe(Consumer<T> onNext): только реакция на элементы.
subscribe(Consumer<T> onNext, Consumer<Throwable> onError): плюс обработка ошибок.
subscribe(Consumer<T> onNext, Consumer<Throwable> onError, Runnable onComplete): полный цикл.
subscribe(Subscriber<T> subscriber): кастомный подписчик для полного контроля (с onSubscribe для Subscription).


Пример простейшей подписки на Flux:
import reactor.core.publisher.Flux;

Flux<String> fruitsFlux = Flux.just("яблоко", "банан", "вишня");
fruitsFlux.subscribe(
fruit -> System.out.println("Съедено: " + fruit), // onNext: реакция на каждый элемент
error -> System.err.println("Проблема: " + error.getMessage()), // onError: если ошибка
() -> System.out.println("Фрукты закончились") // onComplete: завершение
);

Вывод: "Съедено: яблоко", "Съедено: банан", "Съедено: вишня", "Фрукты закончились". Если добавить ошибку — Flux.just("яблоко").concatWith(Flux.error(new RuntimeException("Гнилой фрукт"))) — сработает onError, и onComplete не вызовется.


Почему это лучше традиционных? В CompletableFuture вы цепляете thenApply/thenAccept, но рискуете вложенностью. В Reactor subscribe() — точка входа, а реакции — в одном месте. Плюс, подписка возвращает Disposable: объект для отмены (dispose()) в любой момент.

Пример:
Disposable disposable = fruitsFlux.subscribe(...);
disposable.dispose(); // Отмена: поток остановится, onComplete не сработает.
Это полезно для UI или долгоживущих потоков: отпишись, когда компонент уничтожен, чтобы избежать утечек памяти.



#Java #middle #Reactor #Reactive_Streams_API #onNext #onError #onComplet
👍3
Жизненный цикл: этапы от старта до финиша

Жизненный цикл в Reactive Streams — последовательность вызовов: onSubscribe → (onNext)* → (onError | onComplete). Это правило: после onError или onComplete ничего не будет, и поток считается завершённым.

onSubscribe(Subscription s): первый вызов после subscribe(). Здесь подписчик получает Subscription для контроля (request(n) для backpressure или cancel()). Без request() данные не потекут — это защита от перегрузки.
onNext(T item): для каждого элемента. Здесь основная логика: обработка, логирование, трансформация. Может вызываться много раз (в Flux) или раз/никогда (в Mono).
Важно: держите onNext быстрым и неблокирующим — если медленный, перенесите на отдельный планировщик (Schedulers).
onError(Throwable t): если ошибка (исключение). Поток прерывается, onComplete не сработает. Обработайте, чтобы не потерять: логируйте, retry (повторите) или fallback (запасной вариант).
onComplete(): успешное завершение. Нет элементов после, но сигнал, что всё ок.


Пример полного цикла с кастомным подписчиком (BaseSubscriber в Reactor упрощает):

import reactor.core.publisher.BaseSubscriber;

Flux<Integer> numbersFlux = Flux.range(1, 10).map(i -> {
if (i == 5) throw new RuntimeException("Ошибка на 5"); // Симулируем ошибку
return i;
});

numbersFlux.subscribe(new BaseSubscriber<Integer>() {

@Override
protected void hookOnSubscribe(Subscription subscription) {
System.out.println("Подписка готова");
request(3); // Запрашиваем первые 3
}

@Override
protected void hookOnNext(Integer value) {
System.out.println("Элемент: " + value);
request(1); // Запрашиваем по одному дальше
}

@Override
protected void hookOnError(Throwable throwable) {
System.err.println("Ошибка: " + throwable.getMessage());
}

@Override
protected void hookOnComplete() {
System.out.println("Цикл завершён");
}
});

Вывод: "Подписка готова", "Элемент: 1", "Элемент: 2", "Элемент: 3", "Элемент: 4", "Ошибка: Ошибка на 5". onComplete не сработает, потому что ошибка. Без ошибки — все 10 элементов и "Цикл завершён".

Это демонстрирует контроль: request() управляет темпом, как в backpressure (пост 5). Если не request() — только "Подписка готова".


Обработка ошибок и завершения: стратегии для устойчивости

Ошибки — часть жизни: сеть упала, БД не ответила. В Reactor onError — ваш щит. Не игнорируйте: используйте операторы для восстановления.

doOnError(Consumer<Throwable>): дополнительная реакция перед onError подписчика.
onErrorReturn(T value): fallback — верни значение вместо ошибки.
onErrorResume(Function<Throwable, Publisher<T>>): замени на другой поток.
retry(long times): повтори попытку.


Пример с восстановлением:
Mono<String> riskyMono = Mono.fromCallable(() -> {
if (Math.random() > 0.5) throw new RuntimeException("Сбой");
return "Успех";
}).onErrorReturn("Fallback").retry(2); // Retry 2 раза

riskyMono.subscribe(
System.out::println,
error -> System.out.println("Не удалось: " + error),
() -> System.out.println("Завершено")
);

Если сбой — retry, потом fallback. onComplete сработает только при успехе или fallback.

Для onComplete: используйте doFinally(Runnable) — сработает всегда, после onComplete или onError. Полезно для закрытия ресурсов: doFinally(() -> connection.close()).


Практические советы и подводные камни

Всегда реализуйте все методы в Subscriber: иначе дефолтные могут "проглотить" ошибки (onError кидает RuntimeException, если не переопределён).
Используйте Hooks: doOnSubscribe, doOnNext для логирования без изменения потока.
Отмена: dispose() не гарантирует мгновенную остановку — upstream (источник) может продолжить, но данные не дойдут.
Камень: в onNext избегайте блокировок (sleep, IO) — используйте publishOn(Schedulers.boundedElastic()) для переноса.
Тестирование: StepVerifier.create(flux).expectSubscription().expectNext(1,2).expectError().verify(); — проверяет цикл.


В практике: в WebFlux сервис возвращает Flux, клиент subscribe() в контроллере — реакции на события в реальном времени.


#Java #middle #Reactor #Reactive_Streams_API #onNext #onError #onComplet
👍3
Раздел 6. Коллекции в Java

Глава 1. Введение в коллекции

(Практика):
Начать проект «Библиотека».
Создать класс Book с полями title, author, year.
Сделать список книг (пока как массив) и вывести их на экран


Перед тем, как писать код, важно правильно настроить среду разработки. Это обеспечит удобную работу и избежание ошибок на старте.

Запустите IntelliJ IDEA:
Если IDE не открыта, запустите её. Убедитесь, что у вас установлен JDK. Если проект новый, выберите "New Project" на приветственном экране.

Создайте новый проект:
В окне создания проекта выберите "Java" как тип.
Укажите имя проекта, например, "LibraryProject".
Выберите JDK в поле Project SDK (если не настроено, добавьте путь к JDK).
Оставьте остальные настройки по умолчанию (без Maven или Gradle для простоты) и нажмите "Create".
IDE создаст структуру проекта с папкой src для исходного кода.

Настройте структуру проекта:
В дереве проекта (слева) найдите src.
Если нужно, создайте пакет для организации кода: Правой кнопкой на src → New → Package → Назовите "library" (или другое имя). Это хорошая практика для группировки классов.

Создание класса Book
Теперь создадим основной класс для представления книги. Это будет простой класс с полями, который позже расширим.

Создайте класс Book:
В пакете (или прямо в src, если без пакета) щелкните правой кнопкой → New → Java Class.
Назовите класс "Book".
IDE создаст файл
Book.java с базовой структурой

public class Book {}


Добавьте поля:
В теле класса объявите три приватных поля:
title типа String (для названия книги).
author типа String (для автора).
year типа int (для года издания).


Используйте модификатор private для инкапсуляции, как мы изучали в ООП.


Добавьте конструктор:
Создайте публичный конструктор, который принимает три параметра (String title, String author, int year) и присваивает их соответствующим полям с помощью this.
Это позволит создавать объекты Book с начальными значениями.

Добавьте метод для вывода:
Создайте публичный метод, например, printDetails(), который выводит информацию о книге на экран с помощью System.out.println.
В нём используйте поля для формирования строки вроде "Название: [title], Автор: [author], Год: [year]".



Создание списка книг с использованием массива


Пока мы используем массив как простую структуру для хранения списка книг — это поможет сравнить с коллекциями позже.

Создайте класс Main:
Аналогично создайте новый класс "Main" в том же пакете.
Добавьте статический метод main(String[] args) — точку входа.


Объявите массив:
В методе main объявите массив объектов Book фиксированного размера, например, Book[] books = new Book[3]; (размер выберите небольшой для теста).

Инициализируйте массив:
Создайте несколько объектов Book с помощью new Book(title, author, year) и присвойте их элементам массива (books[0] = new Book(...); и т.д.).
Используйте разные значения для демонстрации (например, книги разных авторов и годов).


Выведите список на экран:
Используйте цикл for (или for-each: for (Book book : books)) для перебора массива.
В цикле вызовите метод printDetails() для каждого элемента, чтобы вывести информацию о книгах.


#Java #для_новичков #beginner #Collections #Практика
👍3🔥1
Тестирование и отладка проекта

После реализации протестируйте проект, чтобы убедиться, что всё работает.

Запустите проект:
Правой кнопкой на файле Main.java → Run 'Main.main()'.
В консоли IDE вы должны увидеть вывод списка книг с их деталями.


Отладка:
Если ошибки: Проверьте синтаксис (точки с запятой, скобки).
Используйте отладчик: Установите breakpoint (красная точка слева от строки в main), запустите в debug-режиме (Shift+F9) и шагайте по коду (F8).
Общие проблемы: NullPointerException (если массив не инициализирован), IndexOutOfBoundsException (если выход за пределы массива).


Проверьте вывод:
Убедитесь, что книги выводятся в порядке добавления в массив.
Попробуйте изменить размер массива или добавить больше книг — увидите, как фиксированный размер ограничивает (это мотивирует к коллекциям позже).



Полезные советы для новичков

Организация кода: Используйте пакеты для группировки (например, library.models для Book).
Инкапсуляция: Даже в простом проекте делайте поля private и добавьте геттеры/сеттеры, если нужно изменять.
Массивы vs коллекции: Заметьте ограничения массива (фиксированный размер, ручное управление) — в следующих уроках заменим на ArrayList.
Комментарии: Добавляйте // комментарии к шагам, чтобы код был читаемым.
Версионирование: Если используете Git, создайте репозиторий и закоммитьте начальную версию проекта.
Ресурсы: Документация Oracle по классам и массивам для напоминания синтаксиса.



Практическое задание

Задача 1: Расширьте класс Book, добавив приватное поле isbn (String) и обновите конструктор и метод printDetails() для его включения.
Задача 2: Увеличьте массив до 5 элементов, добавьте больше книг и убедитесь, что вывод работает.
Задача 3: Попробуйте вывести только книги после определенного года — используйте if в цикле перебора массива.

Реализуйте эти задачи самостоятельно, следуя шагам урока. Это поможет закрепить основы перед переходом к коллекциям.


#Java #для_новичков #beginner #Collections #Практика
👍4🔥1
Аспектно-ориентированное программирование в Java (AOP)

АОП — это подход к программированию, который позволяет отделить "сквозные" concerns (это слово значит "заботы" или "аспекты" — повторяющийся код, не связанный с основной логикой, например, логирование или проверка прав доступа) от основной бизнес-логики. В обычном объектно-ориентированном программировании такой код разбросан по всему приложению, что делает его сложным в поддержке. АОП позволяет "вплести" этот код в нужные места автоматически, без изменения основного кода.

Почему АОП полезно?

Представь, что в твоём приложении нужно логировать каждый вызов метода сервиса: записывать, кто вызвал, когда и с какими параметрами. Без АОП ты добавишь строки логирования в каждый метод — это загрязнит код и нарушит принцип "единственной ответственности". С АОП ты создаёшь отдельный "аспект" (модуль для сквозной логики), который автоматически применяется к нужным методам.

Плюсы:
Чистый код: Основная логика не смешивается с вспомогательной.
Легко изменять: Измени аспект — и всё приложение обновится.
Переиспользование: Один аспект для множества мест.
Примеры использования: Логирование, транзакции (атомарные операции с базой данных), кэширование, обработка ошибок, безопасность.


В Java АОП реализуется через библиотеки вроде AspectJ (полноценный язык АОП) или Spring AOP (упрощённая версия, интегрированная в Spring). Spring AOP проще для новичков, использует прокси (заместители объектов) и подходит для большинства задач. Если нужно что-то сложное, как аспекты на уровне полей, переходи к AspectJ, который Spring тоже поддерживает.


Настройка проекта в Spring

Давай создадим простой проект. Предполагаем, у тебя Spring Boot (фреймворк для быстрой разработки). Используй Spring Initializr для генерации.


Добавь зависимости в pom.xml (файл конфигурации сборки Maven):
xml<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
</dependencies>
spring-boot-starter-aop включает всё необходимое для АОП.


Включи АОП в конфигурации. В основном классе приложения добавь аннотацию (метку):
javaimport org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.EnableAspectJAutoProxy;

@SpringBootApplication
@EnableAspectJAutoProxy // Включает автоматическое создание прокси для аспектов
public class AopApplication {
public static void main(String[] args) {
SpringApplication.run(AopApplication.class, args);
}
}
Это говорит Spring: "Используй АОП с прокси".



Основные понятия АОП

Аспект: Класс с логикой, которая применяется сквозно. Обозначается @Aspect.
Совет (Advice): Что именно делать — до, после или вокруг метода. Например,
@Before — перед вызовом.
Точка присоединения (Join Point): Место в коде, где аспект применяется, например, вызов метода.
Точка среза (Pointcut): Выражение, определяющее, где применять аспект, например, все методы в пакете сервисов.
Введение (Introduction): Добавление новых методов или интерфейсов (редко, но мощно).
Вплетение (Weaving): Процесс применения аспекта — в Spring это на этапе выполнения (runtime) через прокси.



#Java #middle #on_request #AOP
👍1
Пример: Аспект для логирования

Создадим сервис — класс с бизнес-логикой:
javaimport org.springframework.stereotype.Service;

@Service // Обозначает, что это сервис, Spring создаст экземпляр
public class MyService {
public String doSomething(String input) {
return "Результат: " + input.toUpperCase(); // Простая логика
}
}


Теперь аспект для логирования:

javaimport org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.springframework.stereotype.Component;

@Aspect // Это аспект
@Component // Spring зарегистрирует его
public class LoggingAspect {
@Before("execution(* com.example.service.*.*(..))") // Pointcut: все методы в пакете service
public void logBefore(JoinPoint joinPoint) { // JoinPoint — информация о точке
System.out.println("Вызов метода: " + joinPoint.getSignature().getName());
System.out.println("Аргументы: " + Arrays.toString(joinPoint.getArgs()));
}
}
Здесь @Before значит "выполни перед методом". execution — выражение для pointcut: * значит любой возврат, com.example.service..(..) — любой класс в пакете service, любой метод с любыми аргументами.

Если вызвать myService.doSomething("hello"), в консоли увидишь лог перед результатом.


Более сложный пример: Аспект вокруг метода

Для обработки ошибок или измерения времени используй @Around — он оборачивает метод.
javaimport org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.springframework.stereotype.Component;

@Aspect
@Component
public class TimingAspect {
@Around("execution(* com.example.service.*.*(..))")
public Object measureTime(ProceedingJoinPoint joinPoint) throws Throwable {
long start = System.currentTimeMillis();
Object result = joinPoint.proceed(); // Выполняет оригинальный метод
long end = System.currentTimeMillis();
System.out.println("Время выполнения: " + (end - start) + " мс");
return result; // Возвращает результат метода
}
}
ProceedingJoinPoint позволяет контролировать вызов: можно пропустить метод, изменить аргументы или результат. Идеально для транзакций или кэша.


Продвинутые советы для опытных разработчиков

Производительность: Прокси в Spring добавляют overhead (небольшую задержку). Для критичных мест используй compile-time weaving из AspectJ.
Порядок аспектов: Если несколько аспектов на одном методе, используй
@Order(1) для приоритета (меньше число — выше приоритет).
Обработка исключений: В
@Around лови Throwable, логируй и перебрасывай, чтобы не глотать ошибки.
Тестирование: Используй
@EnableAspectJAutoProxy в тестах, моки (заменители) для аспектов с Mockito.
Интеграция с другими модулями: Spring Security или Spring Cache часто используют АОП внутри — изучи их исходники для идей.
Ограничения: Spring AOP работает только на методах бинов (объектов, управляемых Spring). Для статических методов или конструкторов нужен AspectJ.



#Java #middle #on_request #AOP
👍4
Реактивное программирование

Базовые операторы в Reactor: map, filter, flatMap


Операторы — это методы на Mono/Flux, которые позволяют строить конвейеры: преобразовывать, фильтровать и комбинировать данные асинхронно. Представьте их как звенья в цепи: каждый берёт входной поток, меняет его и передаёт дальше. Сегодня разберём три фундаментальных: map (преобразование элементов), filter (фильтрация) и flatMap (плоское преобразование, для слияния подпотоков). Эти операторы — основа для сложных сценариев, они решают проблемы из первого поста, позволяя писать декларативный код вместо ручных циклов и ожиданий.


Операторы в Reactor — декларативные: вы описываете, что делать с данными, а библиотека заботится об асинхронности, backpressure и ошибках. Они не меняют исходный поток (иммутабельны), а создают новый. Это делает код читаемым и тестируемым.



Map: простое преобразование элементов

Map — оператор для изменения каждого элемента потока. Он берёт входной элемент, применяет функцию и выдаёт результат. Синхронный: функция должна быть быстрой и без блокировок. Идеален для конвертации типов, вычислений или форматирования.

Пример на Flux:
import reactor.core.publisher.Flux;
Flux<String> originalFlux = Flux.just("яблоко", "банан", "вишня");
Flux<String> transformed = originalFlux.map(fruit -> fruit.toUpperCase()); // Преобразование в верхний регистр
transformed.subscribe(System.out::println); // Вывод: "ЯБЛОКО", "БАНАН", "ВИШНЯ"

Здесь map применяет лямбду к каждому элементу последовательно. Если ошибка в функции — сработает onError.


На Mono:
Mono<Integer> num = Mono.just(5).map(x -> x * 2); // Результат: 10


Почему map полезен? В традиционных подходах (как в CompletableFuture.thenApply) вы строите цепочки, но рискуете вложенностью. В Reactor map делает конвейер линейным: читается как последовательный код, но работает асинхронно. Поддерживает backpressure: если подписчик запрашивает n, map передаёт запрос upstream (источнику).


Filter: отбор элементов по условию

Filter — для пропуска только нужных элементов. Принимает предикат (функцию, возвращающую true/false) и пропускает те, для которых true. Остальные игнорируются — поток "сужается".

Пример на Flux:
Flux<Integer> numbers = Flux.range(1, 10);
Flux<Integer> evenNumbers = numbers.filter(num -> num % 2 == 0); // Только чётные
evenNumbers.subscribe(System.out::println); // Вывод: 2, 4, 6, 8, 10

Если поток пустой или ничего не проходит — onComplete сработает без onNext.


На Mono:
Mono<String> word = Mono.just("привет").filter(w -> w.length() > 7); // Не пройдёт — пустой Mono


Filter экономит ресурсы: ненужные элементы не обрабатываются дальше в цепи. В отличие от императивных циклов (где вы фильтруете в for с if), здесь всё асинхронно и с backpressure — запросы передаются источнику только для прошедших элементов.

Комбинация с map: numbers.filter(num -> num > 5).map(num -> num * 10).subscribe(); // 60, 70, 80, 90, 100
Это строит конвейер: фильтр → преобразование, без ручных переменных.



#Java #middle #Reactor #map #filter #flatMap
👍2
FlatMap: плоское преобразование для асинхронных подпотоков

FlatMap — мощный оператор для случаев, когда из одного элемента нужно создать подпоток (Publisher), и слить их в плоский результат. Это как map, но для асинхронных или множественных выходов: он "разворачивает" вложенные потоки. Полезен для запросов в цикле: например, для каждого пользователя — асинхронно запросить данные.


Пример на Flux:
Flux<String> fruits = Flux.just("яблоко", "банан");
Flux<Character> letters = fruits.flatMap(fruit -> Flux.fromArray(fruit.toCharArray())); // Из строки — поток символов
letters.subscribe(System.out::println); // Вывод: я, б, л, о, к, о, б, а, н, а, н (в возможном перемешанном порядке, если асинхронно)

Здесь flatMap берёт строку, создаёт Flux из символов и сливает всё в один поток. В отличие от map (который вернул бы Flux<Flux<Character>> — вложенный), flatMap "сплющивает".



Асинхронный пример: симулируем API-запросы.

import java.time.Duration;
Flux<String> users = Flux.just("user1", "user2");
Flux<String> data = users.flatMap(user -> Mono.just("Данные для " + user).delayElement(Duration.ofSeconds(1))); // Асинхронный подпоток с задержкой
data.subscribe(System.out::println); // Вывод через секунды: "Данные для user1", "Данные для user2" (параллельно, если scheduler позволяет)

FlatMap уважает backpressure: запрашивает у подпотоков по мере нужды. Но осторожно: если подпотоки бесконечные — рискуете перегрузкой. Параметр concurrency (flatMap(func, concurrency)) ограничивает параллелизм.


Почему flatMap решает проблемы? В традиционных подходах (циклы с Future) вы ждёте каждый запрос, блокируя. Здесь — асинхронное слияние, без ожиданий и callback-ада: цепочка читаема.



Практические советы и подводные камни

Читаемость: цепочки операторов пишите по строкам для ясности: flux.filter(...).map(...).flatMap(...);
Ошибки: если в map/flatMap исключение — onError. Используйте handle() для условной обработки.
Производительность: в flatMap устанавливайте concurrency (default 256) для контроля параллелизма: flatMap(func, 4) — max 4 подпотока одновременно.
Камень: блокирующий код в лямбдах — сломает асинхронность. Для IO — используйте flatMap с Mono.fromCallable и publishOn(Schedulers.boundedElastic()).
Тестирование: StepVerifier.create(
flux.map(...)).expectNext("ЯБЛОКО").verifyComplete();


#Java #middle #Reactor #map #filter #flatMap
👍3