Java for Beginner
779 subscribers
749 photos
220 videos
12 files
1.27K links
Канал от новичков для новичков!
Изучайте Java вместе с нами!
Здесь мы обмениваемся опытом и постоянно изучаем что-то новое!

Наш YouTube канал - https://www.youtube.com/@Java_Beginner-Dev

Наш канал на RUTube - https://rutube.ru/channel/37896292/
Download Telegram
История IT-технологий сегодня — 28 ноября


ℹ️ Кто родился в этот день

Кристиан Керстинг (родился 28 ноября 1973 года в Куксхафене, Германия) — немецкий учёный в области ИИ и машинного обучения, профессор, возглавляющий лабораторию по ИИ и машинному обучению (AIML) в Darmstadt; значимые публикации в probabilistic inductive logic programming.


🌐 Знаковые события

1964 — к Марсу запущена американская автоматическая станция «Маринер-4».


#Biography #Birth_Date #Events #28Ноября
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Глава 2. List — списки

Метод get

Доступ к элементам по индексу — это базовая операция, которая раскрывает фундаментальные различия в архитектуре различных реализаций List. В то время как некоторые реализации обеспечивают мгновенный доступ к любому элементу, другие требуют последовательного обхода для достижения целевой позиции. Это различие проистекает из компромисса между скоростью доступа, эффективностью модификаций и потреблением памяти, который каждая реализация решает по-своему.


ArrayList: мгновенный доступ через массив

ArrayList реализует список на основе динамического массива, что обеспечивает ему исключительную производительность при операциях доступа по индексу. Внутренняя структура ArrayList построена вокруг массива Object[], который служит непосредственным хранилищем элементов.

Эта архитектура предоставляет несколько ключевых преимуществ для операции get:
Прямая адресация через смещение в памяти
Константное время доступа к любому элементу
Высокая пространственная локальность, благоприятная для кэширования процессора
Минимальные накладные расходы на операцию доступа



Детальный процесс выполнения get(index)

Фаза валидации и проверки границ
Первым и обязательным шагом в выполнении метода get является проверка корректности запрошенного индекса:

Проверка диапазона:

Система убеждается, что указанный индекс находится в пределах от 0 (включительно) до текущего размера списка (исключительно). Эта проверка включает сравнение индекса с полем size ArrayList и при необходимости выброс исключения IndexOutOfBoundsException с информативным сообщением.

Валидация состояния:
Неявно проверяется, что внутренняя структура данных находится в консистентном состоянии и готова к операции чтения.

Фаза непосредственного доступа к элементу
После успешной валидации индекса происходит собственно извлечение элемента:

Вычисление позиции в массиве:
Поскольку ArrayList использует непрерывный блок памяти, позиция элемента вычисляется как прямое смещение в массиве. Для массива elementData и индекса i элемент находится точно в позиции elementData[i].

Извлечение значения:
Происходит чтение ссылки на объект из соответствующей позиции массива. Эта операция компилируется в одну машинную инструкцию доступа к памяти.

Возврат результата:
Найденный объект возвращается вызывающему коду. Если в указанной позиции хранится null, метод возвращает null без дополнительных проверок.

Отсутствие структурных изменений
Важной характеристикой операции get в ArrayList является то, что она не модифицирует внутреннюю структуру данных.

В отличие от операций добавления или удаления, get является read-only операцией, что означает:
Отсутствие необходимости в блокировках для thread-safe доступа (в read-only сценариях)
Нет модификации счетчика изменений (modCount)
Сохранение целостности внутреннего массива



Производительность и оптимизации

Временная сложность
Операция get в ArrayList имеет временную сложность O(1) в худшем случае. Это означает, что время доступа к первому, последнему или любому другому элементу практически идентично и не зависит от размера списка.

Влияние кэширования процессора
Благодаря непрерывному расположению элементов в памяти, ArrayList идеально использует принцип пространственной локальности:

Кэш-линии процессора:
Смежные элементы часто попадают в одну кэш-линию, что делает последовательный доступ чрезвычайно эффективным.

Prefetching:
Современные процессоры могут предсказывать и предзагружать следующие элементы массива, еще больше ускоряя последовательные операции доступа.

Оптимизации на уровне JVM

JIT-компиляция:
HotSpot JVM может агрессивно оптимизировать операции доступа к массиву, включая elimination bounds checking в некоторых сценариях.

Inlining:
Частые вызовы get могут быть inline-ированы, уменьшая overhead вызова метода.


#Java #для_новичков #beginner #List #ArrayList #LinkedList #get
LinkedList: последовательный доступ через цепочку узлов

Архитектурные основы связного списка
LinkedList реализует список на основе двусвязного списка, где каждый элемент хранится в отдельном узле, содержащем ссылки на данные, предыдущий и следующий узлы.

Эта архитектура fundamentally меняет механизм доступа к элементам:

Последовательный доступ вместо прямого
Линейная временная сложность доступа по индексу
Отсутствие преимуществ пространственной локальности
Дополнительные затраты на обход цепочки


Структура узла и организация данных
Каждый узел LinkedList содержит три ключевых компонента:
Node {
E item; // хранимый элемент
Node<E> next; // ссылка на следующий узел
Node<E> prev; // ссылка на предыдущий узел
}
Список поддерживает ссылки на первый (head) и последний (tail) узлы, а также счетчик размера.


Детальный процесс выполнения get(index)


Фаза валидации и стратегического выбора
Как и в ArrayList, первым шагом является проверка корректности индекса:

Проверка границ:
Убеждаются, что индекс находится в диапазоне [0, size-1].

Выбор стратегии обхода:
В зависимости от положения индекса выбирается оптимальная точка начала обхода:
Если индекс находится в первой половине списка (index < size / 2), обход начинается с головы (head)
Если индекс находится во второй половине, обход начинается с хвоста (tail)
Эта оптимизация уменьшает среднее количество шагов обхода с n/2 до n/4.


Фаза последовательного обхода
После выбора начальной точки начинается процесс пошагового перемещения по цепочке узлов:

Инициализация обхода:
Создается временная переменная-указатель, которая устанавливается на начальный узел (head или tail).

Последовательное перемещение:
Для каждого шага обхода:
Если движение от головы, указатель перемещается к следующему узлу (
node.next)
Если движение от хвоста, указатель перемещается к предыдущему узлу (node.prev)
Счетчик текущей позиции обновляется


Достижение целевой позиции:
Процесс продолжается до тех пор, пока текущая позиция не совпадет с запрошенным индексом.

Фаза извлечения и возврата результата
Когда целевой узел найден:

Извлечение элемента:
Из поля item целевого узла извлекается хранимый объект.

Возврат результата:
Объект возвращается вызывающему коду. Как и в ArrayList, если узел содержит null, возвращается null.


Производительность и характеристики доступа

Временная сложность
Операция get в LinkedList имеет временную сложность O(n) в худшем случае, где n — количество элементов в списке. Однако благодаря двунаправленному обходу средняя сложность составляет O(n/4) = O(n).

Зависимость от паттерна доступа
Худший случай:
Доступ к элементу в середине большого списка требует обхода примерно n/2 узлов.

Лучший случай:
Доступ к первому или последнему элементу требует всего одного шага.

Средний случай:
При равномерном распределении запросов среднее количество шагов составляет n/4.

Влияние на производительность

Отсутствие кэширования:
Из-за разрозненного расположения узлов в памяти отсутствуют преимущества кэширования процессора.

Overhead обхода:
Каждый шаг обхода требует разыменования ссылки и проверки условий, что создает дополнительную нагрузку.


#Java #для_новичков #beginner #List #ArrayList #LinkedList #get
Сравнительный анализ производительности

Количественные характеристики

Время доступа:
ArrayList: 5-10 наносекунд на операцию (не зависит от размера)
LinkedList: 10-50 наносекунд × количество пройденных узлов


Потребление памяти:
ArrayList: ~4 байта на элемент (в плотно заполненном массиве)
LinkedList: ~24-32 байта на элемент (затраты на узел)


Качественные различия

Пространственная локальность:
ArrayList: Отличная — элементы расположены непрерывно
LinkedList: Плохая — элементы разбросаны по куче


Масштабируемость:
ArrayList: Идеальная — постоянное время независимо от размера
LinkedList: Линейная деградация — время растет пропорционально размеру



Специализированные реализации List

CopyOnWriteArrayList


Механизм доступа:
Использует snapshot массив, что обеспечивает thread-safe доступ без блокировок:
Операция get просто обращается к текущему snapshot массива
Отсутствие блокировок и contention между читателями
Гарантированная consistency во время итерации


Производительность:
Сопоставима с ArrayList для операций чтения, но с дополнительным уровнем indirection.

Vector

Устаревший synchronized доступ:

Все операции, включая get, синхронизированы, что создает излишний overhead в single-threaded сценариях.


Многопоточные аспекты доступа

Потокобезопасность операций чтения

Несинхронизированные реализации:

ArrayList и LinkedList не гарантируют корректность при concurrent модификациях:
Возможность чтения устаревших данных
Риск исключений при структурных изменениях во время доступа
Отсутствие happens-before отношений


Thread-safe альтернативы:
CopyOnWriteArrayList: Идеален для read-heavy workloads
Collections.synchronizedList(): Добавляет синхронизацию к стандартным реализациям
Vector: Устаревшая синхронизированная реализация



Практические рекомендации

Критерии выбора реализации

Выбор ArrayList когда:
Преобладает случайный доступ по индексу
Частые операции получения элементов
Известен или может быть оценен конечный размер списка
Критически важна производительность операций чтени
Память является ограниченным ресурсом


Выбор LinkedList когда:
Преобладают операции вставки/удаления в начала/конца списка
Основной паттерн доступа — последовательная итерация
Размер списка сильно варьируется
Операции доступа по индексу редки или предсказуемы



Влияние современных аппаратных архитектур

Иерархия памяти и кэширование

ArrayList:
Отличное использование L1/L2/L3 кэшей
Эффективный prefetching
Минимальные cache misses


LinkedList:
Частые cache misses из-за random access к памяти
Неэффективное использование prefetcher'а
Высокий penalty при промахах кэша


Влияние на реальную производительность

Разрыв в производительности между ArrayList и LinkedList для операций get может достигать 50-100 раз для больших списков и случайного доступа, что делает правильный выбор реализации критически важным для производительности приложения.


#Java #для_новичков #beginner #List #ArrayList #LinkedList #get
Что выведет код?

import java.util.ArrayList;
import java.util.List;

public class Task281125 {
public static void main(String[] args) {
List<Integer> list = new ArrayList<>();
list.add(1);
list.add(2);
list.add(3);

List<Integer> subList = list.subList(1, 3);
list.add(4);

System.out.println(subList.get(0));
System.out.println(subList.get(1));
}
}


#Tasks
Варианты ответа:
Anonymous Quiz
40%
2 3
20%
2 4
20%
3 4
20%
ConcurrentModificationException