Complete Ai/Ml road map๐ฅ
It's the trend of Ai๐
1.Intro to AI:
โข Definition of AI
โข Types of AI
โข AI in real life
2.Introduction to ML:
โข Definition of ML
โข Types of ML
- Supervised
- Unsupervised
- Reinforcement
โข ML applications
3.Mathematics for ML:
โข Linear Algebra
โข Calculus
โข Probability and Statistics
4.Programming Basics:
โข Choose a prog language
- e.g., Python
โข Basic syntax
โข data structures
โข Intro to libraries like
- NumPy
- Pandas
5.Supervised Learning:
โข Regression
โข Classification
โข Model evaluation
โข metrics
6.Unsupervised Learning:
โข Clustering
โข Dimensionality reduction
โข Association rule learning
7.Deep Learning Basics:
โข Neural networks
โข Activation functions
โข Backpropagation
8.Intro to TensorFlow and PyTorch:
โข Basic usage
โข syntax
โข Building simple neural networks
9.Advanced Deep Learning:
โข Convolutional Neural Networks (CNN)
โข Recurrent Neural Networks (RNN)
โข Transfer Learning
10.Natural Language Processing (NLP):
โข Text processing
โข Tokenization and stemming
โข Sentiment analysis
11. Computer Vision:
โข Image processing
โข Object detection
โข Image segmentation
12.Reinforcement Learning:
โข Basics of RL
โข Markov Decision Processes
โข Q-Learning
โข Policy Gradient methods
13.Generative Adversarial Networks (GANs):
โข Introduction to GANs
โข Image generation with GANs
14.Time Series Analysis:
โข Time series forecasting
โข ARIMA models
โข LSTM for time series
15.Anomaly Detection:
โข Types of anomalies
โข Approaches to anomaly detection
16. AI Ethics and Bias:
โข Ethical considerations in AI/ML
โข Addressing bias in models
17.Model Deployment:
โข Containerization
- e.g., Docker
โข Deployment platforms
- e.g., Flask, FastAPI
18.Monitoring and Maintenance:
โข Model monitoring
โข Continuous integration (CI)
โข continuous deployment (CD)
19.Scalability:
โข Handling large datasets
โข Distributed computing frameworks
- e.g., Apache Spark
20. AI/ML in the Cloud:
โข Using cloud services
- e.g., AWS, Azure, GCP
โข Serverless computing
21.Explainable AI (XAI):
โข Techniques for interpretable models
โข Importance of model explainability
22.AutoML:
โข Automated machine learning tools
โข Hyperparameter tuning
23.Quantum Machine Learning:
โข Basics of quantum computing
โข Quantum machine learning algorithms
24. AI for Edge Computing:
โข Deploying models on edge devices
โข Edge AI applications
25.Stay Updated:
โข Follow research papers
โข Followconferences
- e.g., NeurIPS, ICML
โข Join AI/ML communities
26.Advanced Research Topics:
โข Dive into cutting-edge research areas
โข Contribute to open-source AI projects
------------------- END --------------------
That's a wrap๐
It's the trend of Ai๐
1.Intro to AI:
โข Definition of AI
โข Types of AI
โข AI in real life
2.Introduction to ML:
โข Definition of ML
โข Types of ML
- Supervised
- Unsupervised
- Reinforcement
โข ML applications
3.Mathematics for ML:
โข Linear Algebra
โข Calculus
โข Probability and Statistics
4.Programming Basics:
โข Choose a prog language
- e.g., Python
โข Basic syntax
โข data structures
โข Intro to libraries like
- NumPy
- Pandas
5.Supervised Learning:
โข Regression
โข Classification
โข Model evaluation
โข metrics
6.Unsupervised Learning:
โข Clustering
โข Dimensionality reduction
โข Association rule learning
7.Deep Learning Basics:
โข Neural networks
โข Activation functions
โข Backpropagation
8.Intro to TensorFlow and PyTorch:
โข Basic usage
โข syntax
โข Building simple neural networks
9.Advanced Deep Learning:
โข Convolutional Neural Networks (CNN)
โข Recurrent Neural Networks (RNN)
โข Transfer Learning
10.Natural Language Processing (NLP):
โข Text processing
โข Tokenization and stemming
โข Sentiment analysis
11. Computer Vision:
โข Image processing
โข Object detection
โข Image segmentation
12.Reinforcement Learning:
โข Basics of RL
โข Markov Decision Processes
โข Q-Learning
โข Policy Gradient methods
13.Generative Adversarial Networks (GANs):
โข Introduction to GANs
โข Image generation with GANs
14.Time Series Analysis:
โข Time series forecasting
โข ARIMA models
โข LSTM for time series
15.Anomaly Detection:
โข Types of anomalies
โข Approaches to anomaly detection
16. AI Ethics and Bias:
โข Ethical considerations in AI/ML
โข Addressing bias in models
17.Model Deployment:
โข Containerization
- e.g., Docker
โข Deployment platforms
- e.g., Flask, FastAPI
18.Monitoring and Maintenance:
โข Model monitoring
โข Continuous integration (CI)
โข continuous deployment (CD)
19.Scalability:
โข Handling large datasets
โข Distributed computing frameworks
- e.g., Apache Spark
20. AI/ML in the Cloud:
โข Using cloud services
- e.g., AWS, Azure, GCP
โข Serverless computing
21.Explainable AI (XAI):
โข Techniques for interpretable models
โข Importance of model explainability
22.AutoML:
โข Automated machine learning tools
โข Hyperparameter tuning
23.Quantum Machine Learning:
โข Basics of quantum computing
โข Quantum machine learning algorithms
24. AI for Edge Computing:
โข Deploying models on edge devices
โข Edge AI applications
25.Stay Updated:
โข Follow research papers
โข Followconferences
- e.g., NeurIPS, ICML
โข Join AI/ML communities
26.Advanced Research Topics:
โข Dive into cutting-edge research areas
โข Contribute to open-source AI projects
------------------- END --------------------
That's a wrap๐
โค3
Forwarded from Muhammed Teshome
Seriosly,
pick an object and ask a series of what, how, why, where, and when questions.
Do not limit yourself to the physical world here, or even direct connections.
focus on it for atleast 10 minutes contemplating and questioning it.
what do you get ?.. what did you realize ?...
#my_sunday_madness ๐๐๐
pick an object and ask a series of what, how, why, where, and when questions.
Do not limit yourself to the physical world here, or even direct connections.
focus on it for atleast 10 minutes contemplating and questioning it.
what do you get ?.. what did you realize ?...
#my_sunday_madness ๐๐๐
โค1๐คฏ1
Not using Ai ?..You are falling behind!
start with Bard Ai.
https://www.youtube.com/watch?v=YMybfJuaWP4
in this video, i will show you how to use bard for you use case!
go to bard's site ๐
https://bard.google.com/
start with Bard Ai.
https://www.youtube.com/watch?v=YMybfJuaWP4
in this video, i will show you how to use bard for you use case!
go to bard's site ๐
https://bard.google.com/
YouTube
How to use Bard Ai | แ แญแฒแแปแ แขแแฐแแแแต ( Ai ) แฅแแดแต แฅแแ แแ ? | #bardai #ai #artificialintelligence
Learn Artificial intelligence : Bard Ai
#EmmersiveLearning #Emmersive #Learning #Muhammed
---------------------
แ แแแ แจแแ แ แซแ แแตแซ แแพแปแฝแ แญแจแณแฐแแแข แ แแแฝแ แผแญ แ แแตแจแ แฐแ แแ แซแตแญแแธแแข
Facebook:
https://www.facebook.com/EmmersiveLearning
Instagram:
https://wwโฆ
#EmmersiveLearning #Emmersive #Learning #Muhammed
---------------------
แ แแแ แจแแ แ แซแ แแตแซ แแพแปแฝแ แญแจแณแฐแแแข แ แแแฝแ แผแญ แ แแตแจแ แฐแ แแ แซแตแญแแธแแข
Facebook:
https://www.facebook.com/EmmersiveLearning
Instagram:
https://wwโฆ
โค2
Forwarded from Muhammed Teshome
Don't follow the mass.
rebel against them.
make mistakes and learn through the process
question everything.
แ แแ แฅแฎ!... แ แแ แแดแแ แ!.... BE FREE
rebel against them.
make mistakes and learn through the process
question everything.
แ แแ แฅแฎ!... แ แแ แแดแแ แ!.... BE FREE
โค4
Complete DSA road map๐ฅ
In file tree structure๐
|
|-- ๐01_Basics
| |-- ๐01_Introduction_to_DSA
| | |-- Introduction
| | |-- Importance
| | |-- Applications
| |
| |-- ๐02_Big_O_Notation
| |-- Big_O_Notation
|
|-- ๐02_Arrays_and_Strings
| |-- ๐01_Arrays
| | |-- Introduction_to_Arrays
| | |-- Operations_on_Arrays
| | |-- Searching_and_Sorting
| |
| |-- ๐02_Strings
| |-- Introduction_to_Strings
| |-- String_Manipulation
| |-- Introduction_to_Arrays
|
|-- ๐03_Linked_Lists
| |-- ๐01_Singly_Linked_List
| | |-- Intro_to_Singly_Linked_List
| | |-- Operations_on_Singly_Linked_List
| | |-- Detect_and_Remove_Cycle
| |
| |-- ๐02_Doubly_Linked_List
| |-- Intro_to_Doubly_Linked_List
| |-- Operations_on_Doubly_Linked_List
|
|-- ๐04_Stacks_and_Queues
| |-- ๐01_Stacks
| | |-- Introduction_to_Stacks
| | |-- Stack_Operations
| | |-- Implementing_Stacks
| |
| |-- ๐02_Queues
| |-- Introduction_to_Queues
| |-- Queue_Operations
| |-- Implementing_Queues
|
|-- ๐05_Trees_and_Graphs
| |-- ๐01_Trees
| | |-- Intro_to_Trees
| | |-- Binary_Trees
| | |-- Binary_Search_Trees
| |
| |-- ๐02_Graphs
| |-- Introduction_to_Graphs
| |-- Depth_First_Search
| |-- Breadth_First_Search
|
|-- ๐06_Sorting_and_Searching
| |-- ๐01_Sorting_Algorithms
| | |-- Bubble_Sort
| | |-- Insertion_Sort
| | |-- Merge_Sort
| | |-- Quick_Sort
| |
| |-- ๐02_Searching_Algorithms
| |-- Linear_Search
| |-- Binary_Search
|
|-- ๐07_Hash_Tables
| |-- Introduction_to_Hash_Tables
| |-- Hash_Functions
| |-- Collision_Resolution
| |-- Applications_of_Hash_Tables
|
|-- ๐08_Dynamic_Programming
| |-- Intro_to_Dynamic_Programming
| |-- Overlapping_Subproblems
| |-- Optimal_Substructure
| |-- Top-Down_vs_Bottom-Up
| |-- Common_DP_Problems
|
|-- ๐09_Greedy_Algorithms
| |-- Intro_to_Greedy_Algorithms
| |-- Standard_Greedy_Algorithms
| |-- Applications_of_Greedy_Algorithms
|
|-- ๐10_Advanced_Data_Structures
| |-- Trie
| |-- Segment_Tree
| |-- Disjoint_Set_Union
| |-- Fenwick_Tree
|
|-- ๐11_Algorithmic_Paradigms
| |-- Divide_and_Conquer
| |-- Backtracking
| |-- Sliding_Window
|
|-- ๐12_Interview_Preparation
|-- Coding_Practice
|-- Problem_Solving_Strategies
|-- Mock_Interviews
------------------- END -------------------
Good resources to learn and practice DSA๐
1. Courses
Advanced Data Structures (MIT)
rb.gy/qtyuc
Algorithms Specialization (Stanford University)
rb.gy/0pcln
FreeCodeCampOrg
rb.gy/mpyce
The Odin Project DSA
rb.gy/6402y
2. Book
Introduction to Algorithms [Book]
rb.gy/ui3xc
3. YouTube
Abdul Bari
youtube.com/@abdul_bari?siโฆ
Code N Code
youtube.com/@codencode?si=โฆ
Striver
youtube.com/@takeUforward?โฆ
4.Coding Platforms
โข LeetCode
โข HackerRank
โข CodeChef
โข GeeksforGeeks
โข TopCoder
Feel free to add anything I missed โบ๏ธ๐ฑ๐ฑ
---------------------------------------
That's a wrap๐
In file tree structure๐
|
|-- ๐01_Basics
| |-- ๐01_Introduction_to_DSA
| | |-- Introduction
| | |-- Importance
| | |-- Applications
| |
| |-- ๐02_Big_O_Notation
| |-- Big_O_Notation
|
|-- ๐02_Arrays_and_Strings
| |-- ๐01_Arrays
| | |-- Introduction_to_Arrays
| | |-- Operations_on_Arrays
| | |-- Searching_and_Sorting
| |
| |-- ๐02_Strings
| |-- Introduction_to_Strings
| |-- String_Manipulation
| |-- Introduction_to_Arrays
|
|-- ๐03_Linked_Lists
| |-- ๐01_Singly_Linked_List
| | |-- Intro_to_Singly_Linked_List
| | |-- Operations_on_Singly_Linked_List
| | |-- Detect_and_Remove_Cycle
| |
| |-- ๐02_Doubly_Linked_List
| |-- Intro_to_Doubly_Linked_List
| |-- Operations_on_Doubly_Linked_List
|
|-- ๐04_Stacks_and_Queues
| |-- ๐01_Stacks
| | |-- Introduction_to_Stacks
| | |-- Stack_Operations
| | |-- Implementing_Stacks
| |
| |-- ๐02_Queues
| |-- Introduction_to_Queues
| |-- Queue_Operations
| |-- Implementing_Queues
|
|-- ๐05_Trees_and_Graphs
| |-- ๐01_Trees
| | |-- Intro_to_Trees
| | |-- Binary_Trees
| | |-- Binary_Search_Trees
| |
| |-- ๐02_Graphs
| |-- Introduction_to_Graphs
| |-- Depth_First_Search
| |-- Breadth_First_Search
|
|-- ๐06_Sorting_and_Searching
| |-- ๐01_Sorting_Algorithms
| | |-- Bubble_Sort
| | |-- Insertion_Sort
| | |-- Merge_Sort
| | |-- Quick_Sort
| |
| |-- ๐02_Searching_Algorithms
| |-- Linear_Search
| |-- Binary_Search
|
|-- ๐07_Hash_Tables
| |-- Introduction_to_Hash_Tables
| |-- Hash_Functions
| |-- Collision_Resolution
| |-- Applications_of_Hash_Tables
|
|-- ๐08_Dynamic_Programming
| |-- Intro_to_Dynamic_Programming
| |-- Overlapping_Subproblems
| |-- Optimal_Substructure
| |-- Top-Down_vs_Bottom-Up
| |-- Common_DP_Problems
|
|-- ๐09_Greedy_Algorithms
| |-- Intro_to_Greedy_Algorithms
| |-- Standard_Greedy_Algorithms
| |-- Applications_of_Greedy_Algorithms
|
|-- ๐10_Advanced_Data_Structures
| |-- Trie
| |-- Segment_Tree
| |-- Disjoint_Set_Union
| |-- Fenwick_Tree
|
|-- ๐11_Algorithmic_Paradigms
| |-- Divide_and_Conquer
| |-- Backtracking
| |-- Sliding_Window
|
|-- ๐12_Interview_Preparation
|-- Coding_Practice
|-- Problem_Solving_Strategies
|-- Mock_Interviews
------------------- END -------------------
Good resources to learn and practice DSA๐
1. Courses
Advanced Data Structures (MIT)
rb.gy/qtyuc
Algorithms Specialization (Stanford University)
rb.gy/0pcln
FreeCodeCampOrg
rb.gy/mpyce
The Odin Project DSA
rb.gy/6402y
2. Book
Introduction to Algorithms [Book]
rb.gy/ui3xc
3. YouTube
Abdul Bari
youtube.com/@abdul_bari?siโฆ
Code N Code
youtube.com/@codencode?si=โฆ
Striver
youtube.com/@takeUforward?โฆ
4.Coding Platforms
โข LeetCode
โข HackerRank
โข CodeChef
โข GeeksforGeeks
โข TopCoder
Feel free to add anything I missed โบ๏ธ๐ฑ๐ฑ
---------------------------------------
That's a wrap๐
โค2
๐ Full Stack Project Ideas:
โข ๐ค Networking Site
โข โ๏ธ Blog Platform
โข ๐ Online Marketplace
โข ๐ Course App
โข ๐ Project Management Tool
โข ๐ฅ Health Tracker App
โข ๐ฝ Recipe Sharing Platform
โข ๐ Financial Dashboard
โข ๐ Travel Journal App
โข ๐จ Digital Art Gallery
โข ๐ค Networking Site
โข โ๏ธ Blog Platform
โข ๐ Online Marketplace
โข ๐ Course App
โข ๐ Project Management Tool
โข ๐ฅ Health Tracker App
โข ๐ฝ Recipe Sharing Platform
โข ๐ Financial Dashboard
โข ๐ Travel Journal App
โข ๐จ Digital Art Gallery
โค1
Forwarded from Muhammed Teshome
The Feynman Technique
To learn anything:
Step 1: Identify a topic
Step 2: Try to explain it to a 5-year-old
Step 3: Study to fill in knowledge gaps
Step 4: Organize, convey, and review
True genius is the ability to simplify, not complicate.
Simple is beautiful.
To learn anything:
Step 1: Identify a topic
Step 2: Try to explain it to a 5-year-old
Step 3: Study to fill in knowledge gaps
Step 4: Organize, convey, and review
True genius is the ability to simplify, not complicate.
Simple is beautiful.
โค1
Forwarded from Muhammed Teshome
Luck Surface Area
๐The amount of luck that will occur in your life, your Luck Surface Area, is directly proportional to what you do something and how much you tell to people .
๐Doing: This refers to the actions you take to create value in the world, such as building a product, writing a book, or starting a business.
๐Telling: This refers to the communication you have with others about what you are doing, such as sharing your ideas, pitching your product, or networking with potential customers.
๐Luck Surface Area: This is the product of doing and telling. The more you do and the more you tell, the larger your luck surface area becomes.
๐Aperture: This is the openness or receptiveness you have to the potential lucky events that come your way.
๐ if you want to create more luck, you should increase your luck surface area by doing more and telling more, and open up your aperture
๐The amount of luck that will occur in your life, your Luck Surface Area, is directly proportional to what you do something and how much you tell to people .
๐Doing: This refers to the actions you take to create value in the world, such as building a product, writing a book, or starting a business.
๐Telling: This refers to the communication you have with others about what you are doing, such as sharing your ideas, pitching your product, or networking with potential customers.
๐Luck Surface Area: This is the product of doing and telling. The more you do and the more you tell, the larger your luck surface area becomes.
๐Aperture: This is the openness or receptiveness you have to the potential lucky events that come your way.
๐ if you want to create more luck, you should increase your luck surface area by doing more and telling more, and open up your aperture
โค1