DevOps Labdon
456 subscribers
24 photos
3 videos
1 file
675 links
👑 DevOps Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
Observing Egress Traffic with Istio

🟢 خلاصه مقاله:
این مقاله نشان می‌دهد چگونه با استفاده از Istio در محیط Kubernetes می‌توان ترافیک خروجی را — چه در حالت بدون رمزنگاری و چه رمزگذاری‌شده — به‌صورت قابل اتکا مشاهده و کنترل کرد. رویکردهای اصلی شامل TLS origination برای آغاز TLS در پروکسی، TLS termination برای پایان دادن TLS در egress gateway و راه‌اندازی مجدد ارتباط رمزگذاری‌شده، و همچنین مدیریت گواهی‌ها برای حفظ هم‌زمان امنیت و مشاهده‌پذیری است.

برای ترافیک بدون رمزنگاری، با تعریف ServiceEntry، و مسیریابی از طریق VirtualService و DestinationRule، Istio قادر است ترافیک را شناسایی کرده و تلِمتری لایه ۷ مانند متد، مسیر، کدهای پاسخ و تأخیر را از طریق Envoy تولید و به Prometheus/OpenTelemetry ارسال کند.

در ترافیک رمزگذاری‌شده، اگر برنامه‌ها مستقیماً با HTTPS متصل شوند، مشاهده‌پذیری به سطح L3/L4 (مثل SNI، IP/Port، آمار بایت و خطاهای TLS) محدود می‌شود. برای دست‌یابی به دید لایه ۷، می‌توان TLS origination را در سایدکار یا ترجیحاً در egress gateway فعال کرد تا برنامه با HTTP به پروکسی صحبت کند و پروکسی اتصال TLS به سرویس خارجی را برقرار کند. در سناریوهایی که نیاز به بازرسی HTTPS وجود دارد و برنامه الزاماً HTTPS می‌زند، الگوی TLS termination در egress gateway و سپس re-origination به مقصد خارجی قابل استفاده است؛ این روش نیازمند توزیع ریشه CA مورداعتماد به ورک‌لودها و محدودسازی دامنه‌های قابل رهگیری است.

پایه‌ی این الگوها، مدیریت درست گواهی‌ها است: استفاده از SDS برای بارگذاری پویا، مدیریت ریشه‌های اعتماد عمومی، صدور گواهی‌های مشتری هنگام نیاز به mTLS سمت مقصد خارجی، و رعایت نکاتی مانند SNI/SAN، چرخش خودکار و فرآیند ابطال. در عمل، عبور تمام ترافیک از egress gateway، محدودسازی مقاصد با AuthorizationPolicy، و ترجیح TLS origination در gateway برای کنترل متمرکز توصیه می‌شود. بدین ترتیب، Istio امکان مشاهده‌پذیری ترافیک خروجی را با حفظ الزامات امنیتی و انطباق فراهم می‌کند.

#Istio #Kubernetes #Egress #TLS #ServiceMesh #Observability #mTLS #CertificateManagement

🟣لینک مقاله:
https://ku.bz/rc3DypN0f


👑 @DevOps_Labdon
🔵 عنوان مقاله
KubeNodeUsage: Real-Time K8s Node & Pod Metrics from the Terminal

🟢 خلاصه مقاله:
**KubeNodeUsage یک ابزار ترمینالی برای نمایش لحظه‌ای شاخص‌های منابع در K8s است که مصرف CPU و حافظه را در سطح Node و Pod نشان می‌دهد. با نمایی شبیه top و امکان مرتب‌سازی و فیلتر بر اساس namespace، node یا pod، شناسایی هات‌اسپات‌ها و عیب‌یابی سریع را ممکن می‌کند. این ابزار در سناریوهای on-call، استقرار و تست بار، و نیز در محیط‌های headless یا CI کاربردی است و با تکیه بر kubeconfig فعلی، بدون نیاز به داشبورد، بینشی فوری از وضعیت کلاستر را مستقیماً در Terminal ارائه می‌دهد.

#Kubernetes #K8s #Monitoring #Observability #DevOps #SRE #CLI

🟣لینک مقاله:
https://ku.bz/T9pnyMHT4


👑 @DevOps_Labdon
🏆1🤝1
🔵 عنوان مقاله
Orchestrating thousands of speedtests, using Kubernetes

🟢 خلاصه مقاله:
اجرای هزاران تست سرعت در مقیاس بالا یک مسئله هماهنگی و مقیاس‌پذیری است. با کانتینری‌کردن رانرها و اجرای آن‌ها به‌صورت Jobs/CronJobs در Kubernetes می‌توان تعداد زیادی Pod را موازی اجرا کرد، منابع را با requests/limits کنترل نمود و با برچسب‌گذاری، affinity و taints/tolerations آن‌ها را در نودها و ریجن‌های مناسب جای‌گذاری کرد. HPA و autoscaling کلاستر امکان انفجار مقیاس و جمع‌شدن تا صفر را می‌دهند و با زمان‌بندی پله‌ای، پین‌کردن CPU و policyهای شبکه، خطای اندازه‌گیری کاهش می‌یابد. جمع‌آوری داده از اجرای تست‌ها از مسیر صف/ذخیره‌سازی شی‌گرا یا پایگاه سری‌زمان مستقل می‌شود و یک سرویس aggregator اعتبارسنجی و خلاصه‌سازی را انجام می‌دهد. مشاهده‌پذیری با Prometheus و داشبوردهای Grafana خط سیر اجرا، نرخ خطا و توزیع تاخیرها را نشان می‌دهد؛ همچنین با backoff، idempotency، rate limiting و مدیریت secrets پایداری افزایش می‌یابد و همگام‌سازی زمان، مقایسه‌پذیری را بهبود می‌دهد. برای هزینه و تاب‌آوری، از batch window، priority class، نودهای spot/preemptible، PDB و چندریجنی/چندابری استفاده می‌شود. نتیجه اینکه با تکیه بر الگوهای بومی Kubernetes مانند Jobs، CronJobs، autoscaling و صف‌ها، ارکستریشن هزاران تست سرعت قابل اتکا، تکرارپذیر و مقرون‌به‌صرفه می‌شود.

#Kubernetes #SpeedTest #LoadTesting #NetworkPerformance #Scalability #DevOps #CloudNative #Observability

🟣لینک مقاله:
https://ku.bz/m-yzWmZCh


👑 @DevOps_Labdon
🔵 عنوان مقاله
K8z: the Kubernetes manager

🟢 خلاصه مقاله:
K8z ابزاری برای مدیریت Kubernetes است که با تمرکز بر ساده‌سازی عملیات روزمره، خودکارسازی چرخه‌عمر کلاسترها، و کاهش ریسک ارتقا و مقیاس‌دهی، مدیریت یکپارچه‌ای ارائه می‌کند. این ابزار با پشتیبانی از GitOps و ابزارهایی مانند Helm، و اتصال به Prometheus و Grafana برای پایش و هشدار، تجربه توسعه و عملیات را روان‌تر می‌سازد. همچنین با تقویت امنیت، اعمال Policyها و رعایت RBAC، و توجه به بهینگی منابع، در محیط‌های ابری و on‑premise به تیم‌ها کمک می‌کند سریع‌تر و قابل‌اعتمادتر استقرار دهند.

#K8z #Kubernetes #DevOps #CloudNative #GitOps #ClusterManagement #Observability #SRE

🟣لینک مقاله:
https://k8z.dev


👑 @DevOps_Labdon
🔵 عنوان مقاله
kps-zeroexposure – Secure Prometheus Agent for Kube-Prometheus-Stack

🟢 خلاصه مقاله:
این مقاله از kps-zeroexposure معرفی می‌کند؛ یک Prometheus Agent امن برای Kube-Prometheus-Stack که با رویکرد “zero exposure” طراحی شده است. مسئله رایج این است که نمایش Prometheus یا endpointها از طریق LoadBalancer/NodePort/Ingress سطح حمله را بالا می‌برد. kps-zeroexposure همه مؤلفه‌های مانیتورینگ را درون کلاستر خصوصی نگه می‌دارد و به‌جای پذیرش ترافیک ورودی، متریک‌ها را به‌صورت امن به بیرون ارسال می‌کند.

این Agent با Prometheus در حالت agent mode کار می‌کند، همان ServiceMonitor/PodMonitor/Probeهای رایج kube-prometheus-stack را کشف و scrape می‌کند و سپس با remote_write متریک‌ها را به backend مرکزی مانند Thanos، Mimir، Cortex یا Prometheus مرکزی می‌فرستد. ارتباطات خروجی با mTLS و سیاست‌های egress محدودشده امن می‌شوند تا بدون هیچ endpoint عمومی، رصد کامل حفظ شود.

امنیت محور اصلی است: RBAC حداقلی، NetworkPolicy برای جلوگیری از ingress و محدودسازی egress، اجرا با کاربر non-root و فایل‌سیستم read-only، و غیرفعال‌سازی UI و endpointهای مدیریتی/اشکال‌زدایی. امکان فیلتر/رِیلیبل‌کردن برچسب‌های حساس در لبه وجود دارد و گواهی‌ها می‌توانند با cert-manager یا روش‌های امن دیگر مدیریت شوند.

یکپارچگی با kube-prometheus-stack ساده است: scraping داخل کلاستر انجام می‌شود و ذخیره‌سازی بلندمدت، rules و alerting به backend مرکزی واگذار می‌شود. نتیجه، ردپای سبک‌تر، هزینه کمتر (بدون TSDB و UI محلی) و وضعیت امنیتی بهتر است؛ مناسب برای محیط‌های دارای محدودیت شدید ورودی و کنترل دقیق خروجی. مهاجرت نیز سرراست است: فعال‌سازی agent mode، تنظیم remote_write با mTLS و اعمال NetworkPolicy بدون تغییر در ServiceMonitor/PodMonitorهای موجود. برای مشاهده داشبوردها، Grafana به backend مرکزی متصل می‌شود تا یک منبع حقیقت واحد داشته باشید.

#Prometheus #Kubernetes #kube-prometheus-stack #Security #ZeroTrust #Observability #DevOps #mTLS

🟣لینک مقاله:
https://ku.bz/jtT5DjB6h


👑 @DevOps_Labdon
🔵 عنوان مقاله
Argo Rollouts — Rollout Analysis

🟢 خلاصه مقاله:
Argo Rollouts با افزودن Rollout Analysis به فرآیند استقرار در Kubernetes، سنجش خودکار سلامت نسخه جدید را همزمان با افزایش تدریجی ترافیک انجام می‌دهد. با تعریف AnalysisTemplate و اجرای AnalysisRun، سامانه از منابعی مانند Prometheus، Datadog، New Relic، CloudWatch یا Kayenta و حتی webhookهای سفارشی، شاخص‌هایی مثل نرخ خطا، تاخیر و KPIهای کسب‌وکاری را می‌سنجد و بر اساس آستانه‌های موفقیت/شکست، تصمیم به ادامه، مکث یا بازگشت می‌گیرد. این تحلیل در کنار استراتژی‌های Canary و Blue-Green و با مدیریت ترافیک از طریق Istio، NGINX، AWS ALB یا SMI در گام‌های مختلف اجرا می‌شود و می‌تواند پس از هر افزایش وزن یا به‌صورت پس‌زمینه عمل کند. بهترین‌روش‌ها شامل انتخاب شاخص‌های پیشرو، پنجره‌های اندازه‌گیری کوتاه با دوره پایداری، آستانه‌های محافظه‌کارانه در گام‌های نخست، و نگهداری قالب‌ها در Git برای ردیابی و یکنواختی است. نتیجه، کاهش ریسک استقرار و افزایش اطمینان همراه با حفظ سرعت تحویل است.

#ArgoRollouts #Kubernetes #ProgressiveDelivery #CanaryRelease #BlueGreen #DevOps #Observability #SRE

🟣لینک مقاله:
https://ku.bz/FM56-JbFw


👑 @DevOps_Labdon
1
🔵 عنوان مقاله
k8sgpt: Kubernetes analyzer

🟢 خلاصه مقاله:
**k8sgpt یک ابزار تحلیل‌گر برای خوشه‌های Kubernetes است که با اسکن منابع، رویدادها و وضعیت اجزا، خطاها و پیکربندی‌های نادرست را پیدا می‌کند و با توضیحات قابل فهم و پیشنهادهای عملی، عیب‌یابی را سریع‌تر می‌کند. این ابزار می‌تواند بدون AI و صرفاً با قواعد داخلی کار کند، یا در صورت نیاز با اتصال به LLMهای خارجی مانند OpenAI یا مدل‌های محلی، توضیحات و راهکارهای دقیق‌تری ارائه دهد و همزمان اطلاعات حساس را مخفی‌سازی کند.
کارکردهای اصلی شامل یافتن ریشه مشکل در مواردی مثل CrashLoopBackOff، خطای ImagePull، کمبود منابع، خطاهای Readiness/Liveness، و مسائل RBAC/NetworkPolicy، به‌همراه پیشنهاد دستورهای kubectl یا تغییرات لازم در manifestها است. k8sgpt به‌صورت CLI یا افزونه kubectl و در فرآیندهای CI/CD قابل استفاده است و برای پاسخ‌گویی در حوادث، عملیات روزمره و آموزش تیم‌ها کاربرد دارد. با وجود سرعت‌بخشیدن به عیب‌یابی و کاهش MTTR، این ابزار جایگزین سامانه‌های مشاهده‌پذیری مانند Prometheus و Grafana نیست و بهتر است توصیه‌های آن پیش از اعمال در محیط Production بازبینی شوند.

#Kubernetes #k8sgpt #DevOps #SRE #AIOps #CloudNative #Troubleshooting #Observability

🟣لینک مقاله:
https://ku.bz/sV6Dnd99T


👑 @DevOps_Labdon
1
🔵 عنوان مقاله
Kubetail

🟢 خلاصه مقاله:
خلاصه‌ای از ابزار Kubetail: یک ابزار خط فرمان سبک برای جمع‌کردن و نمایش زنده لاگ‌های چند Pod و کانتینر در Kubernetes در یک خروجی واحد است. بر پایه kubectl کار می‌کند، با انتخاب بر اساس نام یا Label، تعیین Namespace و Container، دنبال‌کردن زنده، پیشوند نام Pod/Container و رنگ‌بندی، عیب‌یابی همزمان چند سرویس را ساده می‌کند. نصب آن آسان است (مثلا از طریق Homebrew روی macOS یا دریافت اسکریپت روی Linux) و نیازی به مؤلفهٔ سروری جداگانه ندارد. Kubetail جایگزین سامانه‌های لاگ مرکزی نیست، اما برای دیباگ سریع، بررسی استقرارها و همبستگی خطاها میان چند Pod بسیار کاربردی است.

#Kubetail #Kubernetes #DevOps #Logs #Observability #CLI #SRE #Microservices

🟣لینک مقاله:
https://ku.bz/tZ0FL1r75


👑 @DevOps_Labdon
1
🔵 عنوان مقاله
k8sgpt: Kubernetes analyzer

🟢 خلاصه مقاله:
k8sgpt یک تحلیلگر هوشمند برای خوشه‌های Kubernetes است که با بررسی وضعیت منابع، رویدادها و لاگ‌ها، الگوهای خرابی رایج را شناسایی می‌کند و ریشه مشکل را با زبان ساده همراه با راهکارهای عملی توضیح می‌دهد. این ابزار می‌تواند به‌صورت CLI کنار جریان‌های کاری مبتنی بر kubectl یا داخل خوشه اجرا شود، در CI/CD و فرایندهای DevOps/SRE به تشخیص سریع و کاهش زمان رفع اشکال کمک کند، و خلاصه‌های قابل‌اشتراک ارائه دهد. امکاناتی مانند حذف اطلاعات حساس و انعطاف‌پذیری در استقرار نیز برای استفاده امن و سازگار با محیط‌های مختلف در نظر گرفته شده است.

#Kubernetes #k8sgpt #DevOps #SRE #CloudNative #Troubleshooting #Observability #AIOps

🟣لینک مقاله:
https://ku.bz/sV6Dnd99T


👑 @DevOps_Labdon
1
🔵 عنوان مقاله
Digging Deeper: How Pause containers skew your Kubernetes CPU/Memory Metrics

🟢 خلاصه مقاله:
این آموزش نشان می‌دهد چرا حضور pause containers که Kubernetes برای هر Pod می‌سازد می‌تواند متریک‌های CPU و Memory را منحرف کند و چطور با PromQL آن‌ها را از نتایج حذف کنیم. چون این کانتینرها در سری‌های kubelet/cAdvisor هم‌ردیف کانتینرهای کاری دیده می‌شوند، جمع‌زدن مصرف به ازای Pod یا Namespace باعث تورم مقادیر می‌شود. راه‌حل، فیلتر کردن سری‌ها با برچسب‌هاست؛ برای نمونه استفاده از container!="POD"، container!="" و در صورت نیاز image!~"pause". برای CPU می‌توان از rate روی container_cpu_usage_seconds_total و برای Memory از container_memory_working_set_bytes استفاده کرد و سپس با sum by بر اساس namespace و pod جمع زد. با مقایسه با node-level metrics و ابزارهایی مثل kubectl top می‌توان درستی فیلترها را سنجید. نتیجه، داشبوردهای دقیق‌تر، آلارم‌های سالم‌تر و برنامه‌ریزی ظرفیت هماهنگ با مصرف واقعی است.

#Kubernetes #PromQL #Monitoring #Metrics #Observability #Containers #DevOps #Grafana

🟣لینک مقاله:
https://ku.bz/w-3KDdMYk


👑 @DevOps_Labdon
🔵 عنوان مقاله
Measuring service response time and latency: How to perform a TCP check in Grafana Cloud Synthetic Monitoring (7 minute read)

🟢 خلاصه مقاله:
**
Grafana Cloud Synthetic Monitoring پشتیبانی از TCP check را اضافه کرده تا بتوان عملکرد و اتصال سرویس‌های غیر-HTTP را پایش کرد. این قابلیت با تست اتصال به hostname یا IP و پورت مشخص، و در صورت نیاز ارسال query و بررسی response، امکان سنجش پاسخ‌گویی و latency را فراهم می‌کند.

راه‌اندازی در UI ساده است: هدف درخواست را تعیین می‌کنید، در صورت نیاز query/response اضافه می‌کنید، زمان‌بندی اجرا را تنظیم و محل‌های probe را انتخاب می‌کنید تا دید بهتری از شرایط مناطق مختلف داشته باشید. در پلن رایگان، ماهانه 100k اجرای تست در دسترس است و نتایج در یک dashboard از پیش پیکربندی‌شده نمایش داده می‌شود تا شاخص‌های کلیدی و روندهای latency و response time به‌صورت یک‌جا قابل مشاهده و تحلیل باشد.

#GrafanaCloud #SyntheticMonitoring #TCP #Latency #Observability #SRE #DevOps #Monitoring

🟣لینک مقاله:
https://grafana.com/blog/2025/09/09/measuring-service-response-time-and-latency-how-to-perform-a-tcp-check-in-grafana-cloud-synthetic-monitoring/?utm_source=tldrdevops


👑 @DevOps_Labdon
🔵 عنوان مقاله
From utilization to PSI: Rethinking resource starvation monitoring in Kubernetes

🟢 خلاصه مقاله:
این مقاله نشان می‌دهد تکیه بر شاخص‌های غیرمستقیم مانند استفاده از CPU/Memory و requests/limits در Kubernetes اغلب تصویر غلطی از «گرسنگی منابع» می‌دهد و پیشنهاد می‌کند به جای آن از PSI در Linux استفاده شود. PSI با اندازه‌گیری زمان‌های توقف تسک‌ها هنگام انتظار برای CPU، Memory یا I/O (به‌صورت avg10/avg60/avg300 و مقادیر some/full) خودِ «رقابت بر سر منابع» را نشان می‌دهد، نه صرفاً پر بودن ظرفیت. این کار مواردی مانند تأخیر ناشی از reclaim حافظه، صف‌های I/O، یا اثر همسایه پرسر‌وصدا را که پشت نمودارهای استفاده‌ پنهان می‌مانند، آشکار می‌کند. در عمل می‌توان PSI را در سطح نود و cgroup جمع‌آوری کرد (مثلاً با Prometheus node-exporter) و با Grafana دید، آستانه‌های هشدار و SLOها را بر مبنای فشار واقعی تعریف کرد، و حتی HPA و اتواسکیلینگ کلاستر را به فشار پایدار گره زد. نتیجه: برای تشخیص و رفع رقابت واقعی در Kubernetes باید «فشار» را سنجید و تفسیر کرد، و در کنار آن از شاخص‌های استفاده برای تکمیل تصویر بهره گرفت.

#Kubernetes
#Linux
#PSI
#Observability
#SRE
#ResourceManagement
#Prometheus
#CloudNative

🟣لینک مقاله:
https://ku.bz/Gn7372R9X


👑 @DevOps_Labdon
🔵 عنوان مقاله
Advanced analytics using Amazon CloudWatch Logs Insights (9 minute read)

🟢 خلاصه مقاله:
** خلاصه فارسی: Amazon CloudWatch Logs Insights با پشتیبانی از OpenSearch Piped Processing Language و SQL، تحلیل لاگ‌ها را منعطف‌تر و قدرتمندتر کرده است. این قابلیت‌ها امکان همبستگی سریع‌تر رویدادها، دست‌کاری غنی‌تر داده‌ها (فیلتر، تجمع و تبدیل)، و پیاده‌سازی سناریوهای پیشرفته تشخیص ناهنجاری را فراهم می‌کنند. علاوه بر این، Generative AI با تبدیل درخواست‌های زبان طبیعی به کوئری‌های قابل اجرا، خلاصه‌سازی نتایج و اتصال بین چند منبع لاگ، زمان دستیابی به بینش را به‌طور چشمگیری کاهش می‌دهد.

#AmazonCloudWatch #LogsInsights #OpenSearch #PPL #SQL #GenerativeAI #Observability #AnomalyDetection

🟣لینک مقاله:
https://aws.amazon.com/blogs/mt/advanced-analytics-using-amazon-cloudwatch-logs-insights/?utm_source=tldrdevops


👑 @DevOps_Labdon
🔵 عنوان مقاله
kubectl-klock – Readable kubectl watch output

🟢 خلاصه مقاله:
ابزار kubectl-klock جریان رویدادهای kubectl get --watch را به یک نمایش زنده، خوانا و کم‌نویز تبدیل می‌کند تا به‌جای تکیه بر polling، تغییرات منابع Kubernetes را به‌صورت پیوسته و قابل دنبال‌کردن ببینید. این رویکرد در زمان rollout، رفع اشکال و پایش Pod/Deployment/Job باعث می‌شود گذارها و نتیجه‌ها آشکارتر شوند و واکنش سریع‌تر باشد. kubectl-klock مانند یک لایه سبک روی kubectl عمل می‌کند و با همان الگوهای دستور کار می‌کند؛ بنابراین با کمترین یادگیری، خوانایی و آگاهی لحظه‌ای شما را بهبود می‌دهد.

#Kubernetes #kubectl #DevOps #SRE #Observability #CLI #Streaming #Productivity

🟣لینک مقاله:
https://ku.bz/FHRmb31F0


👑 @DevOps_Labdon
🔵 عنوان مقاله
Enhancing Kubernetes Event Management with Custom Aggregation

🟢 خلاصه مقاله:
این مطلب در kubernetes.io نشان می‌دهد چگونه می‌توان یک سامانه‌ی تجمیع سفارشی برای Eventهای Kubernetes ساخت تا محدودیت‌های پیش‌فرض را دور بزند و سیگنال‌ها را قابل استفاده‌تر کند. ایده این است که رویدادهای خام و پرتکرار از طریق API خوانده شوند، بر اساس کلیدهایی مانند involved object، reason، namespace و الگوی پیام گروه‌بندی و نرمال‌سازی شوند، رویدادهای تکراری در پنجره‌های زمانی حذف و شمارش شوند، و در نهایت رکوردهای خلاصه و ماندگار تولید شود.

با ذخیره‌سازی این خلاصه‌ها در یک backend پایدار و تعریف سیاست‌های نگهداشت، تاریخچه‌ی معنادار برای تحلیل و عیب‌یابی حفظ می‌شود. سامانه می‌تواند API و داشبورد برای جست‌وجو و روندیابی ارائه دهد، به هشداردهی متصل شود تا به‌جای جهش‌های لحظه‌ای روی الگوهای پایدار یا غیرعادی هشدار دهد، و متریک‌ها را برای ابزارهای observability صادر کند. ملاحظات عملی شامل RBAC مناسب، کنترل فشار روی API server، کش کارآمد، HA و پشتیبانی چندکلاستری است. یک controller مبتنی بر CRD نیز می‌تواند AggregatedEventها را نگه دارد و با Jobهای پس‌زمینه سیاست‌های retention را اعمال کند. نتیجه، کاهش نویز، حفظ تاریخچه فراتر از ظرفیت پیش‌فرض و بهبود قابلیت مشاهده و عملیات SRE/DevOps است.

#Kubernetes #EventManagement #Aggregation #Observability #DevOps #SRE #CloudNative #Monitoring

🟣لینک مقاله:
https://ku.bz/HCfkK0GTC


👑 @DevOps_Labdon
3
🔵 عنوان مقاله
Grafana k8s-monitoring-helm: Scalable Observability Stack for Kubernetes

🟢 خلاصه مقاله:
این مقاله یک راهکار یکپارچه و مقیاس‌پذیر برای مشاهده‌پذیری Kubernetes با استفاده از Helm معرفی می‌کند که به‌صورت یک چارت، استقرار نظارت جامع شامل metrics، logs و traces را ساده می‌سازد. اجزای کلیدی آن شامل جمع‌آوری metrics سازگار با Prometheus، تجمیع logs با Loki و agents سبک مثل Promtail یا Grafana Agent، پشتیبانی از traces با Tempo و OpenTelemetry، و نمایش و هشداردهی از طریق Grafana است. این چارت با کشف خودکار سرویس‌ها، داشبوردهای آماده، قوانین هشدار، و گزینه‌های مقیاس‌پذیری (sharding، remote_write، و تنظیمات retention/limits) امکان بهره‌برداری در خوشه‌های بزرگ را فراهم می‌کند. امنیت و پایداری با RBAC، TLS، مدیریت Secrets، NetworkPolicy و پشتیبانی از persistence و GitOps (مانند Argo CD و Flux) پوشش داده می‌شود. هدف، ارائه مسیر سریع و قابل اتکا برای استقرار مشاهده‌پذیری در Kubernetes است؛ چه در مدل خودمیزبان و چه با اتصال به Grafana Cloud، همراه با قابلیت شخصی‌سازی داشبوردها و سیاست‌های مقیاس‌پذیری.

#Kubernetes #Grafana #Helm #Observability #Prometheus #Loki #OpenTelemetry #DevOps

🟣لینک مقاله:
https://ku.bz/G5l3N6Pcw


👑 @DevOps_Labdon
1
🔵 عنوان مقاله
Troubleshooting packet drops in a Kubernetes-based observability platform

🟢 خلاصه مقاله:
** این مطالعهٔ موردی نشان می‌دهد تیم SRE در Kapital Bank چگونه افت‌های گهگاهی کارایی در یک پلتفرم observability مبتنی بر Kubernetes را که به Memcached متکی بود ریشه‌یابی کرد. آن‌ها با همبسته‌سازی سیگنال‌ها در سطح Kubernetes و شواهد کرنل لینوکس، مشکل را به دراپ بسته‌ها در مسیر شبکهٔ کرنل تحت الگوهای بار خاص محدود کردند. جمع‌بندی این بود که برخی مقادیر پیش‌فرض کرنل برای الگوهای اتصال پرتراکم و پرتلاطم در محیط‌های کانتینری مناسب نیست و باعث فشار روی صف‌ها و بافرهای شبکه می‌شود. با تنظیم دقیق پارامترهای کرنل و اعتبارسنجی تدریجی تغییرات روی نودهای میزبان Memcached، نرخ دراپ بسته‌ها کاهش یافت و پایداری و پیش‌بینی‌پذیری کارایی بهبود پیدا کرد. نتیجهٔ عملی: به مسائل کارایی به‌صورت میان‌لایه‌ای نگاه کنید، قبل و بعد از تغییرات اندازه‌گیری کنید، و تنظیمات ایمن کرنل را در ران‌بوک‌ها مستند سازید.

#Kubernetes #SRE #Observability #Memcached #LinuxKernel #Networking #DevOps #PerformanceTuning

🟣لینک مقاله:
https://ku.bz/spNnnpsM-


👑 @DevOps_Labdon
🔵 عنوان مقاله
Platform engineering toolkit for Kubernetes

🟢 خلاصه مقاله:
این جعبه‌ابزار مهندسی پلتفرم برای Kubernetes مسیرهای استاندارد و خودسرویس را برای ساخت، استقرار و اجرای نرم‌افزار فراهم می‌کند. هسته آن شامل IaC با Terraform یا Crossplane و Cluster API، مدیریت پیکربندی با Helm یا Kustomize و اعمال تغییرات به‌صورت GitOps توسط Argo CD یا Flux است. امنیت و انطباق با policy-as-code از طریق OPA Gatekeeper یا Kyverno، مدیریت اسرار با Vault یا SOPS، و امنیت زنجیره تأمین با امضا و اسکن تصویر (Sigstore Cosign، Trivy و SBOM) تضمین می‌شود. مشاهده‌پذیری و پایداری با Prometheus، Grafana، OpenTelemetry و بک‌اندهایی مانند Jaeger/Tempo/Loki، به‌همراه SLOها، مقیاس‌گذاری HPA/VPA/KEDA و در صورت نیاز service mesh مثل Istio یا Linkerd و شبکه‌سازی Cilium/Calico تقویت می‌گردد. تجربه توسعه‌دهنده از طریق یک Internal Developer Portal مانند Backstage، الگوهای طلایی، ادغام با CI/CD (GitHub Actions، GitLab CI، Jenkins)، محیط‌های پیش‌نمایش و تحویل تدریجی با Argo Rollouts یا Flagger بهبود می‌یابد. برای عملیات و حاکمیت، RBAC حداقلی، خط‌مشی‌های پذیرش، ممیزی، مدیریت هزینه با Kubecost و رویکرد چندکلاستری/چندابری به‌کار می‌رود. اندازه‌گیری موفقیت با شاخص‌های DORA و تمرکز بر کاهش بار شناختی انجام می‌شود و با اتخاذ تدریجی پشته، از GitOps و IaC آغاز و سپس به سیاست‌ها، مشاهده‌پذیری، automation و بهبود DX گسترش می‌یابد.

#Kubernetes #PlatformEngineering #DevOps #GitOps #CloudNative #SRE #Observability #Automation

🟣لینک مقاله:
https://ku.bz/TpyynNht7


👑 @DevOps_Labdon
🔵 عنوان مقاله
Kubernetes observability from day one - mixins on Grafana, mimir and alloy

🟢 خلاصه مقاله:
**این مقاله نشان می‌دهد چگونه با استفاده از Kubernetes Mixins (باندل‌هایی از dashboards، alerts و rules بر پایه Jsonnet) می‌توان از همان ابتدا یک پشته observability روی Grafana، Mimir و Alloy راه‌اندازی کرد. نویسنده نحوه رندر و استقرار Mixins برای تولید داشبوردها و قوانین عملیاتی، و نیز اعمال config overrides برای انطباق با برچسب‌ها، نام‌گذاری‌ها و متریک‌های اختصاصی را توضیح می‌دهد. نتیجه، یک نقطه شروع سریع و استاندارد برای observability است که همزمان امکان سفارشی‌سازی و توسعه تدریجی را فراهم می‌کند.

#Kubernetes #Observability #Grafana #Mimir #Alloy #Jsonnet #DevOps

🟣لینک مقاله:
https://ku.bz/HQ0lMwlh2


👑 @DevOps_Labdon
🔵 عنوان مقاله
NGINX Gateway Fabric

🟢 خلاصه مقاله:
NGINX Gateway Fabric یک لایه دروازه‌ مدرن و Cloud‑Native مبتنی بر NGINX است که مدیریت یکپارچه ترافیک را برای سناریوهای ingress، API gateway و ارتباطات سرویس‌به‌سرویس فراهم می‌کند و با Kubernetes و Gateway API همسو است. این راهکار با تفکیک control plane و data plane، مقیاس‌پذیری افقی، چندمستاجری و چندکلاستری را ممکن می‌کند و با جریان‌های GitOps و CI/CD به‌خوبی ادغام می‌شود. قابلیت‌های کلیدی آن شامل مسیریابی L7 هوشمند، TLS termination، mTLS، اعتبارسنجی JWT، rate limiting، تبدیل درخواست/پاسخ، و الگوهای تاب‌آوری مانند retries، timeouts، و انتشارهای تدریجی است. همچنین با ارائه‌ متریک، لاگ و تریس، به‌صورت بومی با Prometheus و OpenTelemetry برای رصدپذیری عمیق یکپارچه می‌شود. هدف، ساده‌سازی عملیات، بهبود امنیت بر پایه policy‑as‑code و ارائه تجربه‌ای یکسان در edge، محیط‌های on‑prem و ابر است.

#NGINX #APIgateway #Kubernetes #GatewayAPI #CloudNative #TrafficManagement #Security #Observability

🟣لینک مقاله:
https://ku.bz/F1y8trBlY


👑 @DevOps_Labdon