DenoiseLAB
486 subscribers
1.33K photos
159 videos
3 files
1.57K links
Блог DenoiseLAB (машинное обучение, аналитика)

Информация в канале служит только для ознакомления и не является призывом к действию. Не нарушайте законы РФ и других стран. Мы не несем отвественность за ваши действия или бездействия.
Download Telegram
300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_220

🔠Какие данные блокчейна используются для анализа обнаружения мошенничества в блокчейне? (Часть_2)

- Данные о блоках: Информация о блоках, включая их размер, количество транзакций, временные метки и другие атрибуты, которые могут быть использованы для анализа и обнаружения аномалий.

- Анализ поведения пользователей: Данные о поведении пользователей, такие как частота транзакций, объемы переводов, а также анализ паттернов поведения, которые могут указывать на мошеннические действия.

#financialflows #blockchainaddresses #tracking #visualization #stolenfunds #pricemanipulation #moneylaundering #realtimemonitoring #suspicioustransactions #largetransfers #sanctionedaddresses #blockchainsystem
300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_220

🔠Какие данные блокчейна используются для анализа обнаружения мошенничества в блокчейне? (Часть_3)

Связанные данные: Данные, полученные из внешних источников, такие как информация о блокчейн-адресах, связанных с финансовыми санкциями, информация о пользователях из социальных сетей или другие данные, которые могут быть использованы для улучшения анализа и обнаружения мошенничества.

#financialflows #blockchainaddresses #tracking #visualization #stolenfunds #pricemanipulation #moneylaundering #realtimemonitoring #suspicioustransactions #largetransfers #sanctionedaddresses #blockchainsystem
Недавно увидел такой код, заинтересовало именно примение hexbin к матрице корреляции, в целом почему бы и нет, но hexbin лучше подходит для данных пара-значение. Просто необычно ))

import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

# Создаем пример данных
np.random.seed(0)
data = np.random.rand(100, 2)

# Вычисляем матрицу корреляции
correlation_matrix = np.corrcoef(data.T)

# Построение hexbin графика
sns.hexbin(data[:, 0], data[:, 1], cmap="Blues")

# Добавление заголовка и меток осей
plt.title("Hexbin Plot of Correlation Matrix")
plt.xlabel("Variable 1")
plt.ylabel("Variable 2")

# Отображение графика
plt.show()
300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_220

🔠Какие аномалии в сети могут указывать на мошенничество в блокчейне? (Часть_1)

- Неожиданные объемы транзакций: Субъекты, которые внезапно начинают совершать большое количество транзакций, могут указывать на попытки мошенничества, такие как атаки 51% или попытки перевода средств из одной сети в другую.

- Аномалии в паттернах поведения: Необычные паттерны поведения, такие как множественные попытки доступа к одному и тому же аккаунту или неожиданные переводы между аккаунтами, могут указывать на попытки взлома или мошенничества.

#financialflows #blockchainaddresses #tracking #visualization #stolenfunds #pricemanipulation #moneylaundering #realtimemonitoring #suspicioustransactions #largetransfers #sanctionedaddresses #blockchainsystem
300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_220

🔠Какие аномалии в сети могут указывать на мошенничество в блокчейне? (Часть_2)

- Использование "призрачных брокеров": Мошенники могут использовать данные зарегистрированных брокеров для создания фейковых аккаунтов, привлекая инвесторов и переводя на свои счета средства для инвестирования. Это может быть особенно заметно в схемах, где мошенник использует аферы для влияния на жертв.

#financialflows #blockchainaddresses #tracking #visualization #stolenfunds #pricemanipulation #moneylaundering #realtimemonitoring #suspicioustransactions #largetransfers #sanctionedaddresses #blockchainsystem
https://taplink.cc/denoiselab - обновили визитку, занимаюсь наполнением, освежили так сказать
🔥2
DenoiseLAB pinned «https://taplink.cc/denoiselab - обновили визитку, занимаюсь наполнением, освежили так сказать»
300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_220

🔠Какие аномалии в сети могут указывать на мошенничество в блокчейне? (Часть_2)

- Использование "призрачных брокеров": Мошенники могут использовать данные зарегистрированных брокеров для создания фейковых аккаунтов, привлекая инвесторов и переводя на свои счета средства для инвестирования. Это может быть особенно заметно в схемах, где мошенник использует аферы для влияния на жертв.

#financialflows #blockchainaddresses #tracking #visualization #stolenfunds #pricemanipulation #moneylaundering #realtimemonitoring #suspicioustransactions #largetransfers #sanctionedaddresses #blockchainsystem
300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_220

🔠Какие библиотеки/платформы используются в блокчейне ? (Часть_1)

- Web3.py: Web3.py - это библиотека Python, предназначенная для работы с Ethereum блокчейном. Она предоставляет инструменты для взаимодействия с умными контрактами, отправки транзакций, чтения данных и других операций на блокчейне Ethereum.

- Solidity: Solidity - это язык программирования для написания умных контрактов на блокчейне Ethereum. Он имеет синтаксис, подобный JavaScript, и компилируется в байт-код, который может быть выполнен на виртуальной машине Ethereum.

#financialflows #blockchainaddresses #tracking #visualization #stolenfunds #pricemanipulation #moneylaundering #realtimemonitoring #suspicioustransactions #largetransfers #sanctionedaddresses #blockchainsystem
300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_220

🔠Какие библиотеки/платформы используются в блокчейне ? (Часть_2)

Hyperledger Fabric: Hyperledger Fabric - это платформа для разработки промышленных блокчейн-приложений. Она предоставляет инструменты и библиотеки для создания и развертывания частных блокчейн-сетей с разделением прав доступа и конфиденциальностью данных.

Pyethereum: Pyethereum - это библиотека Python, реализующая протокол Ethereum. Она предоставляет инструменты для работы с блокчейном Ethereum, включая создание и управление умными контрактами, отправку транзакций и чтение данных.

#financialflows #blockchainaddresses #tracking #visualization #stolenfunds #pricemanipulation #moneylaundering #realtimemonitoring #suspicioustransactions #largetransfers #sanctionedaddresses #blockchainsystem
300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_220

🔠Какие библиотеки/платформы используются в блокчейне ? (Часть_3)

Chainlink: Chainlink - это платформа, предназначенная для интеграции оракулов (оракулы - это механизмы, позволяющие блокчейну получать и использовать внешние данные) в блокчейн-приложения. Она предоставляет инструменты и библиотеки для создания и управления оракулами.

#financialflows #blockchainaddresses #tracking #visualization #stolenfunds #pricemanipulation #moneylaundering #realtimemonitoring #suspicioustransactions #largetransfers #sanctionedaddresses #blockchainsystem
☄️☄️☄️Сдал я статью по h2oGPT в печать, жду что будет, и начну отбиваться )), в целом очень неплохая получилось исследование. Теперь можно возвращаться к обычной жизни. Я все таски откинул на потом, занимался только этим. Возможно будут правки, но это уже детали. Пока что продолжаю копать сие разработку и возвращаюсь к рутинной деятельности.

🔥🔥🔥Проектов на текущее время запланировано много, разных и необчных, так что я в процессе как и команда в целом.
Please open Telegram to view this post
VIEW IN TELEGRAM