❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_214
🔠 Какие особенности модели потоков в CUDA могут повлиять на производительность приложения? (Часть_3)
Управление памятью: Использование некэшированной памяти и правильное распределение данных между CPU и GPU могут существенно повлиять на производительность. Неправильное распределение может привести к избыточным операциям копирования данных, что увеличивает задержки и снижает общую производительность.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие особенности модели потоков в CUDA могут повлиять на производительность приложения? (Часть_3)
Управление памятью: Использование некэшированной памяти и правильное распределение данных между CPU и GPU могут существенно повлиять на производительность. Неправильное распределение может привести к избыточным операциям копирования данных, что увеличивает задержки и снижает общую производительность.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_214
🔠 Какие особенности модели потоков в CUDA могут повлиять на производительность приложения? (Часть_4)
Контроль разнообразия (Divergence): Разнообразие потоков внутри блока может привести к снижению параллелизма из-за того, что некоторые потоки могут завершить свою работу раньше остальных. Управление разнообразием может помочь оптимизировать использование ресурсов GPU, но требует дополнительных усилий от разработчика.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие особенности модели потоков в CUDA могут повлиять на производительность приложения? (Часть_4)
Контроль разнообразия (Divergence): Разнообразие потоков внутри блока может привести к снижению параллелизма из-за того, что некоторые потоки могут завершить свою работу раньше остальных. Управление разнообразием может помочь оптимизировать использование ресурсов GPU, но требует дополнительных усилий от разработчика.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
MTS AI создала российскую большую языковую модель для анализа документов и звонков ‼️
Компания MTS AI, дочерняя структура МТС, разработала большую языковую модель (LLM) MTS AI Chat. Она, как утверждается, позволяет решать широкий спектр задач — от генерации и редактирования текстов до суммирования и анализа информации.
Сферы применения: подбор персонала, маркетинг, обслуживание клиентов, подготовка финансовой документации и проверка отчётности, генерация обучающих материалов и пр. На базе MTS AI Chat могут создаваться внутренние системы поиска, чат-боты для ответов на вопросы, рекомендательные сервисы и пр.
В текущем виде LLM поддерживает только текстовые запросы, но компания работает над версией, которая сможет распознавать изображения и видеоматериалы. Кроме того, готовится сервис генерации и автодополнения программного кода.
Участники рынка полагают, что при обучении модели MTS AI могла использовать обезличенные данные, которые собирают другие подразделения группы.
❗️В настоящее время LLM предлагается для развёртывания на оборудовании заказчика, но в перспективе ожидается выход публичной редакции. Пользователи смогут применять модель для составления должностных инструкций, извлечения информации из документов, формирования выжимок телефонных разговоров и пр.
Нужно отметить, что собственные LLM создают и другие российские компании. Так, системный IT-интегратор «Норбит» недавно анонсировал модель Norbit GPT, также ориентированную на корпоративных клиентов. Она предназначена для генерации текстов, обобщения информации, обработки и анализа данных, а также для подготовки ответов на обращения пользователей в службу поддержки.
Компания MTS AI, дочерняя структура МТС, разработала большую языковую модель (LLM) MTS AI Chat. Она, как утверждается, позволяет решать широкий спектр задач — от генерации и редактирования текстов до суммирования и анализа информации.
Сферы применения: подбор персонала, маркетинг, обслуживание клиентов, подготовка финансовой документации и проверка отчётности, генерация обучающих материалов и пр. На базе MTS AI Chat могут создаваться внутренние системы поиска, чат-боты для ответов на вопросы, рекомендательные сервисы и пр.
В текущем виде LLM поддерживает только текстовые запросы, но компания работает над версией, которая сможет распознавать изображения и видеоматериалы. Кроме того, готовится сервис генерации и автодополнения программного кода.
Участники рынка полагают, что при обучении модели MTS AI могла использовать обезличенные данные, которые собирают другие подразделения группы.
❗️В настоящее время LLM предлагается для развёртывания на оборудовании заказчика, но в перспективе ожидается выход публичной редакции. Пользователи смогут применять модель для составления должностных инструкций, извлечения информации из документов, формирования выжимок телефонных разговоров и пр.
Нужно отметить, что собственные LLM создают и другие российские компании. Так, системный IT-интегратор «Норбит» недавно анонсировал модель Norbit GPT, также ориентированную на корпоративных клиентов. Она предназначена для генерации текстов, обобщения информации, обработки и анализа данных, а также для подготовки ответов на обращения пользователей в службу поддержки.
VK запретила роботу Open AI собирать данные платформы «Дзен» ❌
Контентная платформа «Дзен», принадлежащая VK, указала, что роботу GPTBot американской компании OpenAI (разработчик ИИ-бота ChatGPT) запрещено обходить страницы dzen.ru для сбора данных. Об этом пишет «Коммерсантъ» со ссылкой на данные относящегося к платформе файла robots.txt, который предназначен для программ по автоматическому сбору данных с веб-сайтов.
👉 В пресс-службе VK пояснили, что блокировка GPTBot осуществлена для снижения нагрузки на серверы «Дзена».
«Рекомендательная система «Дзена» — одна из самых больших в стране. Высоконагруженные сервисы работают беспрерывно и обрабатывают более 150 тысяч запросов в секунду. Решение не включать GPTBot от OpenAI в файл принято для грамотного использования технического ресурса, чтобы не создавать дополнительную нагрузку. В «Дзене» регулярно создаются миллионы новых публикаций: как в текстах, так и видеоформате, — мы направляем ресурсы на то, чтобы обеспечить качественный опыт нашим пользователям и авторам», — сообщили в VK.
Напомним, файл robots.txt носит рекомендательный характер и технически роботы могут его игнорировать. Что касается GPTBot, то он используется для сбора информации, которая в дальнейшем применяется в процессе обучения нейросетей OpenAI. Американская компания не предоставляет доступ к ним из России, а также заблокировала для россиян доступ к своему сайту.
Контентная платформа «Дзен», принадлежащая VK, указала, что роботу GPTBot американской компании OpenAI (разработчик ИИ-бота ChatGPT) запрещено обходить страницы dzen.ru для сбора данных. Об этом пишет «Коммерсантъ» со ссылкой на данные относящегося к платформе файла robots.txt, который предназначен для программ по автоматическому сбору данных с веб-сайтов.
👉 В пресс-службе VK пояснили, что блокировка GPTBot осуществлена для снижения нагрузки на серверы «Дзена».
«Рекомендательная система «Дзена» — одна из самых больших в стране. Высоконагруженные сервисы работают беспрерывно и обрабатывают более 150 тысяч запросов в секунду. Решение не включать GPTBot от OpenAI в файл принято для грамотного использования технического ресурса, чтобы не создавать дополнительную нагрузку. В «Дзене» регулярно создаются миллионы новых публикаций: как в текстах, так и видеоформате, — мы направляем ресурсы на то, чтобы обеспечить качественный опыт нашим пользователям и авторам», — сообщили в VK.
Напомним, файл robots.txt носит рекомендательный характер и технически роботы могут его игнорировать. Что касается GPTBot, то он используется для сбора информации, которая в дальнейшем применяется в процессе обучения нейросетей OpenAI. Американская компания не предоставляет доступ к ним из России, а также заблокировала для россиян доступ к своему сайту.
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_214
🔠 Какие особенности модели потоков в CUDA могут повлиять на производительность приложения? (Часть_5)
Использование warp'ов и SIMD: Понимание работы с warp'ами и использование SIMD (Single Instruction, Multiple Data) архитектуры в CUDA может значительно улучшить производительность, позволяя оптимизировать выполнение последовательностей инструкций и уменьшить накладные расходы.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие особенности модели потоков в CUDA могут повлиять на производительность приложения? (Часть_5)
Использование warp'ов и SIMD: Понимание работы с warp'ами и использование SIMD (Single Instruction, Multiple Data) архитектуры в CUDA может значительно улучшить производительность, позволяя оптимизировать выполнение последовательностей инструкций и уменьшить накладные расходы.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_215
🔠 Какие методы могут использоваться для определения количества блоков и потоков в сетке?
Эмпирические методы: Начать можно с экспериментальных значений, основанных на размере задачи и характеристиках GPU. Это может включать в себя постепенное увеличение числа потоков в блоке и блоков в сетке, пока не будет достигнута максимальная производительность. Этот метод может быть эффективным, но требует многократного тестирования и настройки.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие методы могут использоваться для определения количества блоков и потоков в сетке?
Эмпирические методы: Начать можно с экспериментальных значений, основанных на размере задачи и характеристиках GPU. Это может включать в себя постепенное увеличение числа потоков в блоке и блоков в сетке, пока не будет достигнута максимальная производительность. Этот метод может быть эффективным, но требует многократного тестирования и настройки.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_215
🔠 Какие методы могут использоваться для определения количества блоков и потоков в сетке? (Часть_2)
Анализ характеристик GPU: Изучение документации NVIDIA и характеристик конкретного GPU может дать представление о максимальном количестве потоков, которые могут одновременно выполняться, и о рекомендуемых размерах блоков и сетки. Например, многие современные GPU имеют архитектуру, которая оптимизирована для работы с определенным количеством потоков в блоке и блоков в сетке.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие методы могут использоваться для определения количества блоков и потоков в сетке? (Часть_2)
Анализ характеристик GPU: Изучение документации NVIDIA и характеристик конкретного GPU может дать представление о максимальном количестве потоков, которые могут одновременно выполняться, и о рекомендуемых размерах блоков и сетки. Например, многие современные GPU имеют архитектуру, которая оптимизирована для работы с определенным количеством потоков в блоке и блоков в сетке.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_215
🔠 Какие методы могут использоваться для определения количества блоков и потоков в сетке? (Часть_3)
Использование профилировщика CUDA: CUDA Profiler предоставляет детальную информацию о производительности и использовании ресурсов GPU. Он может помочь определить, как размер блока и сетки влияет на производительность и использование памяти, позволяя разработчикам оптимизировать эти параметры.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие методы могут использоваться для определения количества блоков и потоков в сетке? (Часть_3)
Использование профилировщика CUDA: CUDA Profiler предоставляет детальную информацию о производительности и использовании ресурсов GPU. Он может помочь определить, как размер блока и сетки влияет на производительность и использование памяти, позволяя разработчикам оптимизировать эти параметры.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_216
🔠 Какие параметры блока и сетки могут влиять на производительность приложений на CUDA? (Часть_1)
Размер блока: Количество потоков в блоке влияет на производительность. Оптимальный размер блока обычно кратен размеру деформации, который равен 32 на текущем оборудовании. Важно, чтобы каждый потоковый многопроцессорный блок на графическом процессоре имел достаточно активных деформаций, чтобы скрыть задержки в памяти и конвейере команд архитектуры, достигая максимальной пропускной способности.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие параметры блока и сетки могут влиять на производительность приложений на CUDA? (Часть_1)
Размер блока: Количество потоков в блоке влияет на производительность. Оптимальный размер блока обычно кратен размеру деформации, который равен 32 на текущем оборудовании. Важно, чтобы каждый потоковый многопроцессорный блок на графическом процессоре имел достаточно активных деформаций, чтобы скрыть задержки в памяти и конвейере команд архитектуры, достигая максимальной пропускной способности.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_216
🔠 Какие параметры блока и сетки могут влиять на производительность приложений на CUDA? (Часть_2)
Количество блоков в сетке: Количество блоков в сетке также влияет на производительность. Для достижения оптимальной загрузки оборудования важно попытаться сбалансировать количество блоков так, чтобы оно соответствовало количеству доступных многопроцессорных блоков на графическом процессоре.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие параметры блока и сетки могут влиять на производительность приложений на CUDA? (Часть_2)
Количество блоков в сетке: Количество блоков в сетке также влияет на производительность. Для достижения оптимальной загрузки оборудования важно попытаться сбалансировать количество блоков так, чтобы оно соответствовало количеству доступных многопроцессорных блоков на графическом процессоре.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_216
🔠 Какие параметры блока и сетки могут влиять на производительность приложений на CUDA? (Часть_3)
Использование разделяемой памяти: Разделяемая память может быть эффективной для ускорения доступа к данным внутри блока. Однако неправильное использование разделяемой памяти может привести к банк-конфликтам, когда потоки в одном блоке пытаются одновременно обращаться к одному и тому же банку памяти, что может привести к снижению производительности. Избежание банк-конфликтов может быть достигнуто путем добавления stride или более объемного разбиения на блоки.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие параметры блока и сетки могут влиять на производительность приложений на CUDA? (Часть_3)
Использование разделяемой памяти: Разделяемая память может быть эффективной для ускорения доступа к данным внутри блока. Однако неправильное использование разделяемой памяти может привести к банк-конфликтам, когда потоки в одном блоке пытаются одновременно обращаться к одному и тому же банку памяти, что может привести к снижению производительности. Избежание банк-конфликтов может быть достигнуто путем добавления stride или более объемного разбиения на блоки.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_216
🔠 Какие параметры блока и сетки могут влиять на производительность приложений на CUDA? (Часть_4)
Группировка данных: Группировка данных в большие блоки и передача их одним вызовом функции cudaMemcpy может улучшить производительность, сокращая количество операций копирования памяти.
Экспериментальные данные и профилирование: Выбор оптимального размера блока и количества блоков в сетке является эмпирической задачей, которая может значительно варьироваться в зависимости от конкретного кода и оборудования. Тщательное тестирование и профилирование являются ключевыми для определения этих параметров.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
🔠 Какие параметры блока и сетки могут влиять на производительность приложений на CUDA? (Часть_4)
Группировка данных: Группировка данных в большие блоки и передача их одним вызовом функции cudaMemcpy может улучшить производительность, сокращая количество операций копирования памяти.
Экспериментальные данные и профилирование: Выбор оптимального размера блока и количества блоков в сетке является эмпирической задачей, которая может значительно варьироваться в зависимости от конкретного кода и оборудования. Тщательное тестирование и профилирование являются ключевыми для определения этих параметров.
#CUDA #ComputeUnifiedDeviceArchitecture #NVIDIA #highperformancecomputing #graphicsprocessingunits(GPU) #softwareplatform #developers #computationalcapabilities #imageprocessing #dataanalysis #machinelearning
https://boosty.to/denoise_lab/donate - поддержать наш канал
Сейчас в процессе, чтения вот этой книжки, очень интересно написано, но как и полагается данной литературе очень, очень, прям совсем много много предостережений.
Представлены основные вопросы, касательно проблем существующих сетей, их способов взлома и целевых атак. Рассмотрено множество проблем от "галюцинирования" моделей до настройки пайплана в самом широком смысле слова.
Это такое, первое и и весьма своеобразное руководство по DevSecMLOps. Знаете, чем-то напоминает сборник, или даже лоскутное одеяло по практическим рекомендациям, но весьма полезным.
По сетям пока, что не так много атак, безусловно они будут только множится и их будет становится все больше. Степень и изощренность их постоянно растет, как и рынки по предоставлению различного виду услуг по ним, во всех сегментах сети от clear-net до deep-web.
Представлены основные вопросы, касательно проблем существующих сетей, их способов взлома и целевых атак. Рассмотрено множество проблем от "галюцинирования" моделей до настройки пайплана в самом широком смысле слова.
Это такое, первое и и весьма своеобразное руководство по DevSecMLOps. Знаете, чем-то напоминает сборник, или даже лоскутное одеяло по практическим рекомендациям, но весьма полезным.
По сетям пока, что не так много атак, безусловно они будут только множится и их будет становится все больше. Степень и изощренность их постоянно растет, как и рынки по предоставлению различного виду услуг по ним, во всех сегментах сети от clear-net до deep-web.