❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_204
🔠Что такое ALBERT (A Lite BERT) ? (Часть_2)
Она использует два ключевых принципа для уменьшения количества параметров и вычислительной сложности:
- Факторизация параметризации эмбеддингов: В ALBERT матрица эмбеддингов разделяется между векторами входного слоя с относительно небольшой размерностью (например, 128), в то время как вектора скрытого слоя используют большие размерности (768, как в случае с BERT'ом, и больше). Это позволяет существенно уменьшить количество параметров проекционного блока, снижая при этом количество параметров на 80%.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
🔠Что такое ALBERT (A Lite BERT) ? (Часть_2)
Она использует два ключевых принципа для уменьшения количества параметров и вычислительной сложности:
- Факторизация параметризации эмбеддингов: В ALBERT матрица эмбеддингов разделяется между векторами входного слоя с относительно небольшой размерностью (например, 128), в то время как вектора скрытого слоя используют большие размерности (768, как в случае с BERT'ом, и больше). Это позволяет существенно уменьшить количество параметров проекционного блока, снижая при этом количество параметров на 80%.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_205
🔠Что такое SpanBERT ? (Часть_1)
SpanBERT — это предварительно обученный метод, разработанный для лучшего представления и предсказания интервалов текста. В отличие от BERT, который маскирует случайные токены, SpanBERT маскирует случайные непрерывные интервалы (spans) текста. Кроме того, в SpanBERT используется новый подход к обучению границ интервалов (Span-Boundary Objective, SBO), чтобы модель училась предсказывать весь маскированный интервал, используя только контекст, в котором он появляется.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
🔠Что такое SpanBERT ? (Часть_1)
SpanBERT — это предварительно обученный метод, разработанный для лучшего представления и предсказания интервалов текста. В отличие от BERT, который маскирует случайные токены, SpanBERT маскирует случайные непрерывные интервалы (spans) текста. Кроме того, в SpanBERT используется новый подход к обучению границ интервалов (Span-Boundary Objective, SBO), чтобы модель училась предсказывать весь маскированный интервал, используя только контекст, в котором он появляется.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
This media is not supported in your browser
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_205
🔠Что такое SpanBERT ? (Часть_2)
SpanBERT был разработан для улучшения предварительного обучения, так как многие задачи обработки естественного языка (NLP) требуют логического вывода о отношениях между двумя или более интервалами текста.
Например, в задачах извлечения ответов на вопросы (extractive question answering) определение того, что "Denver Broncos" является типом "NFL team", критически важно для ответа на вопрос "Какой NFL команде выиграл Супербоул 50?"
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
🔠Что такое SpanBERT ? (Часть_2)
SpanBERT был разработан для улучшения предварительного обучения, так как многие задачи обработки естественного языка (NLP) требуют логического вывода о отношениях между двумя или более интервалами текста.
Например, в задачах извлечения ответов на вопросы (extractive question answering) определение того, что "Denver Broncos" является типом "NFL team", критически важно для ответа на вопрос "Какой NFL команде выиграл Супербоул 50?"
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_205
🔠Что такое SpanBERT ? (Часть_3)
SpanBERT показал значительные улучшения в задачах выбора интервалов, таких как ответы на вопросы и разрешение кореференций, и достиг новых результатов в этих задачах. Например, с теми же данными обучения и размером модели, как у BERT-large, SpanBERT получил 94,6% F1 на SQuAD 1.1 и 88,7% F1 на SQuAD 2.0 соответственно.
Также SpanBERT достиг нового лучшего результата на задаче разрешения кореференций OntoNotes (79,6% F1) и показал хорошую производительность на бенчмарке TACRED для извлечения отношений
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
🔠Что такое SpanBERT ? (Часть_3)
SpanBERT показал значительные улучшения в задачах выбора интервалов, таких как ответы на вопросы и разрешение кореференций, и достиг новых результатов в этих задачах. Например, с теми же данными обучения и размером модели, как у BERT-large, SpanBERT получил 94,6% F1 на SQuAD 1.1 и 88,7% F1 на SQuAD 2.0 соответственно.
Также SpanBERT достиг нового лучшего результата на задаче разрешения кореференций OntoNotes (79,6% F1) и показал хорошую производительность на бенчмарке TACRED для извлечения отношений
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
• Jaz mail
• InstAddr
• Erine.email
• Maildrop
• Mailsac
• Anonbox
• Inboxes
• Mailcatch
• Mailpro
• Tempmail
• Emailfake
• Tempr.email
• Email Generator
• Yopmail
• One Off
• Moakt
• 33Mail
• 10-минутная почта
• Emaildrop
• FakeMail
• Tempinbox
• TemporaryMail
• Mailinator
• Dispostable
• GuerrillaMail
• Email On Deck
• Crazy Mailing
• Mohmal
• Trash-mail
Please open Telegram to view this post
VIEW IN TELEGRAM
m.kuku.lu
InstAddr - Instant Email Address
Multipurpose free email addresses. Any number of addresses at one time, no limits. No need to register either.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_206
Как SpanBERT использует новый подход к обучению границ интервалов (Span-Boundary Objective, SBO)? (Часть_1)
SpanBERT использует новый подход к обучению границ интервалов (Span-Boundary Objective, SBO) для улучшения представления и предсказания интервалов текста. В отличие от стандартного подхода BERT, который маскирует случайные токены, SpanBERT маскирует случайные непрерывные интервалы (spans) текста.
Это позволяет модели учиться предсказывать весь маскированный интервал, используя только контекст, в котором он появляется, без необходимости полагаться на индивидуальные представления токенов внутри него.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
Как SpanBERT использует новый подход к обучению границ интервалов (Span-Boundary Objective, SBO)? (Часть_1)
SpanBERT использует новый подход к обучению границ интервалов (Span-Boundary Objective, SBO) для улучшения представления и предсказания интервалов текста. В отличие от стандартного подхода BERT, который маскирует случайные токены, SpanBERT маскирует случайные непрерывные интервалы (spans) текста.
Это позволяет модели учиться предсказывать весь маскированный интервал, используя только контекст, в котором он появляется, без необходимости полагаться на индивидуальные представления токенов внутри него.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_206
Как SpanBERT использует новый подход к обучению границ интервалов (Span-Boundary Objective, SBO)? (Часть_2)
SpanBERT также использует дополнительную вспомогательную цель обучения — SBO. Этот новый подход предназначен для предсказания всего маскированного интервала, используя только представления токенов на границе интервала. Это позволяет модели сосредоточиться на контексте, который окружает интервал, и улучшает ее способность предсказывать интервалы текста.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
Как SpanBERT использует новый подход к обучению границ интервалов (Span-Boundary Objective, SBO)? (Часть_2)
SpanBERT также использует дополнительную вспомогательную цель обучения — SBO. Этот новый подход предназначен для предсказания всего маскированного интервала, используя только представления токенов на границе интервала. Это позволяет модели сосредоточиться на контексте, который окружает интервал, и улучшает ее способность предсказывать интервалы текста.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
Незаменимая нейронка для SQL-запросов. Text2sql легко превратит ваш текст в готовый запрос. А если не понимаете, что происходит в запросе — просто закиньте его в специальный раздел и прога подробно его объяснит.
Главная фича — нейронка умеет фиксить ошибки в уже готовых SQL-запросах. Также есть возможность загрузить схему своей базы данных, чтобы ИИ лучше генерила ответы.
Cохраняем себе здесь.
—
@ai_for_web — самые полезные AI-инструменты для веб-мастера
@ai_sklad — а здесь собираем остальные AI-инструменты, удобно разбивая их по категориям.
Главная фича — нейронка умеет фиксить ошибки в уже готовых SQL-запросах. Также есть возможность загрузить схему своей базы данных, чтобы ИИ лучше генерила ответы.
Cохраняем себе здесь.
—
@ai_for_web — самые полезные AI-инструменты для веб-мастера
@ai_sklad — а здесь собираем остальные AI-инструменты, удобно разбивая их по категориям.
Text to SQL with AI, in seconds
Save time by letting AI write your SQL code for you. Effortlessly generate optimized SQL queries using your native language.
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_206
Как SpanBERT использует новый подход к обучению границ интервалов (Span-Boundary Objective, SBO)? (Часть_2)
SpanBERT также отличается от BERT тем, что использует один непрерывный сегмент текста для каждого обучающего примера, вместо двух, как это делает BERT. Это означает, что SpanBERT не использует цель предсказания следующего предложения BERT, что позволяет сосредоточиться на задачах выбора интервалов, таких как ответы на вопросы.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
Как SpanBERT использует новый подход к обучению границ интервалов (Span-Boundary Objective, SBO)? (Часть_2)
SpanBERT также отличается от BERT тем, что использует один непрерывный сегмент текста для каждого обучающего примера, вместо двух, как это делает BERT. Это означает, что SpanBERT не использует цель предсказания следующего предложения BERT, что позволяет сосредоточиться на задачах выбора интервалов, таких как ответы на вопросы.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_206
🔠Какие еще задачи можно решать с помощью SpanBERT, помимо выбора интервалов?
SpanBERT, помимо задач выбора интервалов, также показывает сильные результаты в следующих задачах обработки естественного языка (NLP):
- Извлечение ответов на вопросы (Question Answering, QA): SpanBERT достигает 94.6% F1 на SQuAD 1.1 и 88.7% F1 на SQuAD 2.0, что является значительным улучшением по сравнению с BERT.
- Разрешение кореференций (Coreference Resolution): SpanBERT устанавливает новый стандарт на задаче разрешения кореференций OntoNotes с 79.6% F1, что является значительным улучшением.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
🔠Какие еще задачи можно решать с помощью SpanBERT, помимо выбора интервалов?
SpanBERT, помимо задач выбора интервалов, также показывает сильные результаты в следующих задачах обработки естественного языка (NLP):
- Извлечение ответов на вопросы (Question Answering, QA): SpanBERT достигает 94.6% F1 на SQuAD 1.1 и 88.7% F1 на SQuAD 2.0, что является значительным улучшением по сравнению с BERT.
- Разрешение кореференций (Coreference Resolution): SpanBERT устанавливает новый стандарт на задаче разрешения кореференций OntoNotes с 79.6% F1, что является значительным улучшением.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_206
🔠Какие еще задачи можно решать с помощью SpanBERT, помимо выбора интервалов? (Часть_2)
- Извлечение отношений (Relation Extraction): На бенчмарке TACRED SpanBERT показывает сильную производительность, что свидетельствует о его эффективности в задачах, связанных с распознаванием и интерпретацией отношений между сущностями в тексте 124.
- GLUE: SpanBERT также демонстрирует улучшения на GLUE, что является набором задач NLP, охватывающих различные аспекты понимания естественного языка, включая классификацию текста, извлечение ответов на вопросы и другие
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
🔠Какие еще задачи можно решать с помощью SpanBERT, помимо выбора интервалов? (Часть_2)
- Извлечение отношений (Relation Extraction): На бенчмарке TACRED SpanBERT показывает сильную производительность, что свидетельствует о его эффективности в задачах, связанных с распознаванием и интерпретацией отношений между сущностями в тексте 124.
- GLUE: SpanBERT также демонстрирует улучшения на GLUE, что является набором задач NLP, охватывающих различные аспекты понимания естественного языка, включая классификацию текста, извлечение ответов на вопросы и другие
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_207
🔠 Какие результаты достигает SpanBERT в задачах извлечения ответов на вопросы (Question Answering, QA)?
- На SQuAD v1.1 SpanBERT достигает F1 score в 91.98, что является улучшением по сравнению с базовым показателем BERT, который составляет 85.49.
- В сравнении с Google BERT, SpanBERT увеличивает F1 score на 3.3%.
Эти результаты показывают, что SpanBERT эффективно улучшает производительность по сравнению с другими моделями BERT, особенно в задачах, где требуется точное выделение и интерпретация текстовых интервалов.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
🔠 Какие результаты достигает SpanBERT в задачах извлечения ответов на вопросы (Question Answering, QA)?
- На SQuAD v1.1 SpanBERT достигает F1 score в 91.98, что является улучшением по сравнению с базовым показателем BERT, который составляет 85.49.
- В сравнении с Google BERT, SpanBERT увеличивает F1 score на 3.3%.
Эти результаты показывают, что SpanBERT эффективно улучшает производительность по сравнению с другими моделями BERT, особенно в задачах, где требуется точное выделение и интерпретация текстовых интервалов.
https://boosty.to/denoise_lab/donate - поддержать наш канал.
#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
https://www.computerworld.com/article/3712700/italian-watchdog-says-chatgpt-breached-data-privacy-norms.html
Опять скандал вокруг Open AI, теперь они перешли на заимствование контента )) в грубой форме. Судебные иски вырастают перед их дверьми со скоростью ветра.
На этот раз вляпалась итальянская компания Garante (фирма занимается исследованием соблюдений правил ЕС о конфиденциальности данных различными компаниями и их платформами искусственного интеллекта.), которая обвиняет OpenAI в нарушении норм конфиденциальности данных, установленных ЕС.
OpenAI не ответил на запросы Garante, но получил 30 дней на ответ и подготовку аргументов в свою защиту. Предвидя такой оборот, Garante собрала целевую группы, для окончательного вынесения решения по этому делу. Более того, это далеко не первый случай подобной практики. OpenAI просто забирает контент отовсюду не выплачивая никаких компенсаций правообладателям.
Опять скандал вокруг Open AI, теперь они перешли на заимствование контента )) в грубой форме. Судебные иски вырастают перед их дверьми со скоростью ветра.
На этот раз вляпалась итальянская компания Garante (фирма занимается исследованием соблюдений правил ЕС о конфиденциальности данных различными компаниями и их платформами искусственного интеллекта.), которая обвиняет OpenAI в нарушении норм конфиденциальности данных, установленных ЕС.
OpenAI не ответил на запросы Garante, но получил 30 дней на ответ и подготовку аргументов в свою защиту. Предвидя такой оборот, Garante собрала целевую группы, для окончательного вынесения решения по этому делу. Более того, это далеко не первый случай подобной практики. OpenAI просто забирает контент отовсюду не выплачивая никаких компенсаций правообладателям.
Computerworld
Italian watchdog says ChatGPT breached data privacy norms
Italian watchdog, Garante, which assesses AI platform compliance with EU regulations, has given OpenAI 30 days to respond.