ML Research Hub
32.8K subscribers
4.21K photos
253 videos
23 files
4.54K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ€–πŸ§  PandasAI: Transforming Data Analysis with Conversational Artificial Intelligence

πŸ—“οΈ 28 Oct 2025
πŸ“š AI News & Trends

In a world dominated by data, the ability to analyze and interpret information efficiently has become a core competitive advantage. From business intelligence dashboards to large-scale machine learning models, data-driven decision-making fuels innovation across industries. Yet, for most people, data analysis remains a technical challenge requiring coding expertise, statistical knowledge and familiarity with libraries like ...

#PandasAI #ConversationalAI #DataAnalysis #ArtificialIntelligence #DataScience #MachineLearning
πŸ”Ή Title: MergeMix: A Unified Augmentation Paradigm for Visual and Multi-Modal Understanding

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23479
β€’ PDF: https://arxiv.org/pdf/2510.23479
β€’ Github: https://github.com/Westlake-AI/openmixup

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Multi-Agent Evolve: LLM Self-Improve through Co-evolution

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23595
β€’ PDF: https://arxiv.org/pdf/2510.23595

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Sprint: Sparse-Dense Residual Fusion for Efficient Diffusion Transformers

πŸ”Ή Publication Date: Published on Oct 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21986
β€’ PDF: https://arxiv.org/pdf/2510.21986

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ‘1
πŸ€–πŸ§  Microsoft Data Formulator: Revolutionizing AI-Powered Data Visualization

πŸ—“οΈ 28 Oct 2025
πŸ“š AI News & Trends

In today’s data-driven world, visualization is everything. Whether you’re a business analyst, data scientist or researcher, the ability to convert raw data into meaningful visuals can define the success of your decisions. That’s where Microsoft’s Data Formulator steps in a cutting-edge, open-source platform designed to empower analysts to create rich, AI-assisted visualizations effortlessly. Developed by ...

#Microsoft #DataVisualization #AI #DataScience #OpenSource #Analytics
πŸ€–πŸ§  Google’s GenAI MCP Toolbox for Databases: Transforming AI-Powered Data Management

πŸ—“οΈ 28 Oct 2025
πŸ“š AI News & Trends

In the era of artificial intelligence, where data fuels innovation and decision-making, the need for efficient and intelligent data management tools has never been greater. Traditional methods of database management often require deep technical expertise and manual oversight, slowing down development cycles and creating operational bottlenecks. To address these challenges, Google has introduced the GenAI ...

#Google #GenAI #Database #AIPowered #DataManagement #MachineLearning
πŸ€–πŸ§  Wren AI: Transforming Business Intelligence with Generative AI

πŸ—“οΈ 28 Oct 2025
πŸ“š AI News & Trends

In the evolving world of data and analytics, one thing is certain β€” the ability to transform raw data into actionable insights defines success. Organizations today are generating more data than ever before, yet accessing and understanding that data remains a significant challenge. Traditional business intelligence tools require technical expertise, SQL knowledge and manual configuration. ...

#WrenAI #GenerativeAI #BusinessIntelligence #DataAnalytics #AI #Insights
πŸ”Ή Title: VL-SAE: Interpreting and Enhancing Vision-Language Alignment with a Unified Concept Set

πŸ”Ή Publication Date: Published on Oct 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21323
β€’ PDF: https://arxiv.org/pdf/2510.21323
β€’ Github: https://github.com/ssfgunner/VL-SAE

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Tongyi DeepResearch Technical Report

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24701
β€’ PDF: https://arxiv.org/pdf/2510.24701
β€’ Project Page: https://tongyi-agent.github.io/blog/introducing-tongyi-deep-research/
β€’ Github: https://github.com/Alibaba-NLP/DeepResearch

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ReplicationBench: Can AI Agents Replicate Astrophysics Research Papers?

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24591
β€’ PDF: https://arxiv.org/pdf/2510.24591

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: OSWorld-MCP: Benchmarking MCP Tool Invocation In Computer-Use Agents

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24563
β€’ PDF: https://arxiv.org/pdf/2510.24563
β€’ Project Page: https://osworld-mcp.github.io/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: RoboOmni: Proactive Robot Manipulation in Omni-modal Context

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23763
β€’ PDF: https://arxiv.org/pdf/2510.23763
β€’ Project Page: https://OpenMOSS.github.io/RoboOmni
β€’ Github: https://github.com/OpenMOSS/RoboOmni

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/fnlp/OmniAction
β€’ https://huggingface.co/datasets/fnlp/OmniAction-LIBERO

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ‘1
πŸ”Ή Title: Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24320
β€’ PDF: https://arxiv.org/pdf/2510.24320
β€’ Github: https://github.com/WooooDyy/Critique-RL

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Latent Sketchpad: Sketching Visual Thoughts to Elicit Multimodal Reasoning in MLLMs

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24514
β€’ PDF: https://arxiv.org/pdf/2510.24514
β€’ Project Page: https://latent-sketchpad.github.io/
β€’ Github: https://github.com/hwanyu112/Latent-Sketchpad

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Routing Matters in MoE: Scaling Diffusion Transformers with Explicit Routing Guidance

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24711
β€’ PDF: https://arxiv.org/pdf/2510.24711

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ParallelMuse: Agentic Parallel Thinking for Deep Information Seeking

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24698
β€’ PDF: https://arxiv.org/pdf/2510.24698
β€’ Github: https://github.com/Alibaba-NLP/DeepResearch

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: AgentFold: Long-Horizon Web Agents with Proactive Context Management

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24699
β€’ PDF: https://arxiv.org/pdf/2510.24699
β€’ Github: https://github.com/Alibaba-NLP/DeepResearch

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ‘1
πŸ”Ή Title: WebLeaper: Empowering Efficiency and Efficacy in WebAgent via Enabling Info-Rich Seeking

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24697
β€’ PDF: https://arxiv.org/pdf/2510.24697
β€’ Github: https://github.com/Alibaba-NLP/DeepResearch

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: AgentFrontier: Expanding the Capability Frontier of LLM Agents with ZPD-Guided Data Synthesis

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24695
β€’ PDF: https://arxiv.org/pdf/2510.24695
β€’ Github: https://github.com/Alibaba-NLP/DeepResearch

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Repurposing Synthetic Data for Fine-grained Search Agent Supervision

πŸ”Ή Publication Date: Published on Oct 28

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.24694
β€’ PDF: https://arxiv.org/pdf/2510.24694
β€’ Github: https://github.com/Alibaba-NLP/DeepResearch

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT