ML Research Hub
32.8K subscribers
4.38K photos
270 videos
23 files
4.74K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: Universal Image Restoration Pre-training via Masked Degradation Classification

πŸ”Ή Publication Date: Published on Oct 15

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.13282
β€’ PDF: https://arxiv.org/pdf/2510.13282
β€’ Project Page: https://github.com/MILab-PKU/MaskDCPT
β€’ Github: https://github.com/MILab-PKU/MaskDCPT

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
Contribute with us to expand the services offered in our channel

We plan to use an advanced AI model to add more information about the most prominent events, models, and articles released and provide explanations.

This requires preparing an infrastructure for our server and purchasing an API for an AI model.

Contribute to the development of our community with us

Contact me @husseinsheikho
ML Research Hub pinned Β«Contribute with us to expand the services offered in our channel We plan to use an advanced AI model to add more information about the most prominent events, models, and articles released and provide explanations. This requires preparing an infrastructure…»
πŸ”Ή Title: Stronger Together: On-Policy Reinforcement Learning for Collaborative LLMs

πŸ”Ή Publication Date: Published on Oct 13

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.11062
β€’ PDF: https://arxiv.org/pdf/2510.11062
β€’ Project Page: https://pettingllms-ai.github.io/
β€’ Github: https://github.com/pettingllms-ai/PettingLLMs

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Reasoning in Space via Grounding in the World

πŸ”Ή Publication Date: Published on Oct 15

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.13800
β€’ PDF: https://arxiv.org/pdf/2510.13800
β€’ Project Page: https://yiming-cc.github.io/gs-reasoner/
β€’ Github: https://github.com/WU-CVGL/GS-Reasoner

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Hierarchical Frequency Tagging Probe (HFTP): A Unified Approach to Investigate Syntactic Structure Representations in Large Language Models and the Human Brain

πŸ”Ή Publication Date: Published on Oct 15

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.13255
β€’ PDF: https://arxiv.org/pdf/2510.13255
β€’ Github: https://github.com/LilTiger/HFTP

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MATH-Beyond: A Benchmark for RL to Expand Beyond the Base Model

πŸ”Ή Publication Date: Published on Oct 13

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.11653
β€’ PDF: https://arxiv.org/pdf/2510.11653

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/brendel-group/MATH-Beyond

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: EAGER: Entropy-Aware GEneRation for Adaptive Inference-Time Scaling

πŸ”Ή Publication Date: Published on Oct 13

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.11170
β€’ PDF: https://arxiv.org/pdf/2510.11170

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: The Art of Scaling Reinforcement Learning Compute for LLMs

πŸ”Ή Publication Date: Published on Oct 15

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.13786
β€’ PDF: https://arxiv.org/pdf/2510.13786

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Dedelayed: Deleting remote inference delay via on-device correction

πŸ”Ή Publication Date: Published on Oct 15

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.13714
β€’ PDF: https://arxiv.org/pdf/2510.13714

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: What Generative Search Engines Like and How to Optimize Web Content Cooperatively

πŸ”Ή Publication Date: Published on Oct 13

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/pdf/2510.11438
β€’ PDF: https://arxiv.org/pdf/2510.11438
β€’ Github: https://github.com/cxcscmu/AutoGEO

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Evaluating Language Models' Evaluations of Games

πŸ”Ή Publication Date: Published on Oct 13

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.10930
β€’ PDF: https://arxiv.org/pdf/2510.10930

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Tracing the Traces: Latent Temporal Signals for Efficient and Accurate Reasoning

πŸ”Ή Publication Date: Published on Oct 12

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.10494
β€’ PDF: https://arxiv.org/pdf/2510.10494

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Haystack Engineering: Context Engineering for Heterogeneous and Agentic Long-Context Evaluation

πŸ”Ή Publication Date: Published on Oct 8

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07414
β€’ PDF: https://arxiv.org/pdf/2510.07414
β€’ Github: https://github.com/Graph-COM/HaystackCraft

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/Graph-COM/HaystackCraft

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Learning to Grasp Anything by Playing with Random Toys

πŸ”Ή Publication Date: Published on Oct 14

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.12866
β€’ PDF: https://arxiv.org/pdf/2510.12866

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Don't Throw Away Your Pretrained Model

πŸ”Ή Publication Date: Published on Oct 10

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.09913
β€’ PDF: https://arxiv.org/pdf/2510.09913
β€’ Github: https://github.com/BunsenFeng/switch_generation

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention

πŸ”Ή Publication Date: Published on Oct 15

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.13940
β€’ PDF: https://arxiv.org/pdf/2510.13940
β€’ Github: https://github.com/EnVision-Research/MTI

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Information Gain-based Policy Optimization: A Simple and Effective Approach for Multi-Turn LLM Agents

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.14967
β€’ PDF: https://arxiv.org/pdf/2510.14967

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LaSeR: Reinforcement Learning with Last-Token Self-Rewarding

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.14943
β€’ PDF: https://arxiv.org/pdf/2510.14943
β€’ Github: https://github.com/RUCBM/LaSeR

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LLM-guided Hierarchical Retrieval

πŸ”Ή Publication Date: Published on Oct 15

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.13217
β€’ PDF: https://arxiv.org/pdf/2510.13217
β€’ Project Page: https://nilesh2797.github.io/publications/lattice/
β€’ Github: https://github.com/nilesh2797/lattice

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT