🎉💯2024 Highly demanded Top 100+ IT Training courses FREE Giveaway in Networking, Project Management, Cloud and Cyber security including #CCNA 200-301, #CCNP 350-401 #Comptia, #PMP, #AWS, #Azure #Python, #Excel, #AI, #Google courses...... ⬇️📕
✨Get now & start whenever you want! Don't miss this chance to kickstart your IT career in 2024!✨
🔗👨💻Free CCNA Training Course: https://bit.ly/3BoYEdH
🔗🗒️Enroll Free Online Course: https://bit.ly/4dru404
🔗📝Download Free #IT Study Materials:https://bit.ly/3Y213Uj
🔗📲Contact for 1v1 IT Certs Exam Help: https://wa.link/k0vy3x
🌐📚 JOIN IT Study GROUP to Get Madness Discount 👇: https://chat.whatsapp.com/HqzBlMaOPci0wYvkEtcCDa
🔎Follow Social Media for Free e-Book:
https://linktr.ee/SPOTOSocialMedia
✨Get now & start whenever you want! Don't miss this chance to kickstart your IT career in 2024!✨
🔗👨💻Free CCNA Training Course: https://bit.ly/3BoYEdH
🔗🗒️Enroll Free Online Course: https://bit.ly/4dru404
🔗📝Download Free #IT Study Materials:https://bit.ly/3Y213Uj
🔗📲Contact for 1v1 IT Certs Exam Help: https://wa.link/k0vy3x
🌐📚 JOIN IT Study GROUP to Get Madness Discount 👇: https://chat.whatsapp.com/HqzBlMaOPci0wYvkEtcCDa
🔎Follow Social Media for Free e-Book:
https://linktr.ee/SPOTOSocialMedia
👍2❤1
This media is not supported in your browser
VIEW IN TELEGRAM
Transformer by Hand ✍️ in 5 Minutes with Anna Rahn
📂 Tags: #python #ML #Transformer
http://t.me/codeprogrammer⭐️
http://t.me/codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤1
DeepSeek-V3 Technical Report
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in #DeepSeek V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
Paper: https://arxiv.org/pdf/2412.19437v1.pdf
Code: https://github.com/deepseek-ai/deepseek-v3
#aiagents #ai #llm #ml #machinelearning #python
https://t.me/DataScienceT💚
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in #DeepSeek V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
Paper: https://arxiv.org/pdf/2412.19437v1.pdf
Code: https://github.com/deepseek-ai/deepseek-v3
#aiagents #ai #llm #ml #machinelearning #python
https://t.me/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1
MiniCPM-V: A GPT-4V Level MLLM on Your Phone
The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of #AI research and industry, shedding light on a promising path toward the next AI milestone. However, significant challenges remain preventing MLLMs from being practical in real-world applications. The most notable challenge comes from the huge cost of running an MLLM with a massive number of parameters and extensive computation. As a result, most MLLMs need to be deployed on high-performing cloud servers, which greatly limits their application scopes such as mobile, offline, energy-sensitive, and privacy-protective scenarios. In this work, we present MiniCPM-V, a series of efficient #MLLMs deployable on end-side devices. By integrating the latest MLLM techniques in architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has several notable features: (1) Strong performance, outperforming GPT-4V-1106, Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks, (2) strong #OCR capability and 1.8M pixel high-resolution #image perception at any aspect ratio, (3) trustworthy behavior with low hallucination rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on mobile phones. More importantly, MiniCPM-V can be viewed as a representative example of a promising trend: The model sizes for achieving usable (e.g., GPT-4V) level performance are rapidly decreasing, along with the fast growth of end-side computation capacity. This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly possible, unlocking a wider spectrum of real-world AI applications in the near future.
Paper: https://arxiv.org/pdf/2408.01800v1.pdf
Codes:
https://github.com/OpenBMB/MiniCPM-o
https://github.com/openbmb/minicpm-v
Datasets: Video-MME
#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics
https://t.me/DataScienceT❤️
The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of #AI research and industry, shedding light on a promising path toward the next AI milestone. However, significant challenges remain preventing MLLMs from being practical in real-world applications. The most notable challenge comes from the huge cost of running an MLLM with a massive number of parameters and extensive computation. As a result, most MLLMs need to be deployed on high-performing cloud servers, which greatly limits their application scopes such as mobile, offline, energy-sensitive, and privacy-protective scenarios. In this work, we present MiniCPM-V, a series of efficient #MLLMs deployable on end-side devices. By integrating the latest MLLM techniques in architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has several notable features: (1) Strong performance, outperforming GPT-4V-1106, Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks, (2) strong #OCR capability and 1.8M pixel high-resolution #image perception at any aspect ratio, (3) trustworthy behavior with low hallucination rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on mobile phones. More importantly, MiniCPM-V can be viewed as a representative example of a promising trend: The model sizes for achieving usable (e.g., GPT-4V) level performance are rapidly decreasing, along with the fast growth of end-side computation capacity. This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly possible, unlocking a wider spectrum of real-world AI applications in the near future.
Paper: https://arxiv.org/pdf/2408.01800v1.pdf
Codes:
https://github.com/OpenBMB/MiniCPM-o
https://github.com/openbmb/minicpm-v
Datasets: Video-MME
#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics
https://t.me/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3