ML Research Hub
32.8K subscribers
4.36K photos
267 videos
23 files
4.71K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
LEMAS: Large A 150K-Hour Large-scale Extensible Multilingual Audio Suite with Generative Speech Models

📝 Summary:
The LEMAS-Dataset enables high-quality multilingual speech synthesis and editing through specialized models leveraging flow-matching and autoregressive architectures with novel training techniques. AI...

🔹 Publication Date: Published on Jan 4

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2601.04233
• PDF: https://arxiv.org/pdf/2601.04233
• Project Page: https://huggingface.co/spaces/LEMAS-Project/LEMAS-Edit

🔹 Models citing this paper:
https://huggingface.co/LEMAS-Project/LEMAS-TTS
https://huggingface.co/LEMAS-Project/LEMAS-Edit

Datasets citing this paper:
https://huggingface.co/datasets/LEMAS-Project/LEMAS-Dataset-train
https://huggingface.co/datasets/LEMAS-Project/LEMAS-Dataset-eval

Spaces citing this paper:
https://huggingface.co/spaces/LEMAS-Project/LEMAS-TTS
https://huggingface.co/spaces/LEMAS-Project/LEMAS-Edit
https://huggingface.co/spaces/Kaiden423/LEMAS-TTS

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
VERSE: Visual Embedding Reduction and Space Exploration. Clustering-Guided Insights for Training Data Enhancement in Visually-Rich Document Understanding

📝 Summary:
VERSE is a methodology for analyzing and improving Vision-Language Models in document understanding by visualizing latent representations and generating synthetic data to enhance performance in error-...

🔹 Publication Date: Published on Jan 8

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2601.05125
• PDF: https://arxiv.org/pdf/2601.05125
• Project Page: https://huggingface.co/spaces/de-Rodrigo/Embeddings
• Github: https://github.com/nachoDRT/VrDU-Doctor

Datasets citing this paper:
https://huggingface.co/datasets/de-Rodrigo/merit

Spaces citing this paper:
https://huggingface.co/spaces/de-Rodrigo/Embeddings
https://huggingface.co/spaces/de-Rodrigo/saliencies

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
Safety at One Shot: Patching Fine-Tuned LLMs with A Single Instance

📝 Summary:
Safety alignment of large language models can be fully recovered with a single safety example, maintaining utility and achieving convergence in few epochs through identified low-rank gradient structur...

🔹 Publication Date: Published on Jan 5

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2601.01887
• PDF: https://arxiv.org/pdf/2601.01887

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
MiroThinker: Pushing the Performance Boundaries of Open-Source Research Agents via Model, Context, and Interactive Scaling

📝 Summary:
We present MiroThinker v1.0, an open-source research agent designed to advance tool-augmented reasoning and information-seeking capabilities. Unlike previous agents that only scale up model size or co...

🔹 Publication Date: Published on Nov 14, 2025

🔹 Paper Links:
• arXiv Page: https://arxivlens.com/PaperView/Details/mirothinker-pushing-the-performance-boundaries-of-open-source-research-agents-via-model-context-and-interactive-scaling-9611-0f2289e7
• PDF: https://arxiv.org/pdf/2511.11793
• Project Page: https://dr.miromind.ai/
• Github: https://github.com/MiroMindAI/MiroThinker

🔹 Models citing this paper:
https://huggingface.co/miromind-ai/MiroThinker-v1.5-235B
https://huggingface.co/miromind-ai/MiroThinker-v1.5-30B
https://huggingface.co/miromind-ai/MiroThinker-v1.0-72B

Datasets citing this paper:
https://huggingface.co/datasets/miromind-ai/MiroVerse-v0.1

Spaces citing this paper:
https://huggingface.co/spaces/zoom-ai/hle-leaderboard
https://huggingface.co/spaces/miromind-ai/MiroMind-Open-Source-Deep-Research

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
LTX-2: Efficient Joint Audio-Visual Foundation Model

📝 Summary:
LTX-2 is an open-source audiovisual diffusion model that generates synchronized video and audio content using a dual-stream transformer architecture with cross-modal attention and classifier-free guid...

🔹 Publication Date: Published on Jan 6

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2601.03233
• PDF: https://arxiv.org/pdf/2601.03233
• Project Page: https://huggingface.co/papers/2511.12072
• Github: https://github.com/Lightricks/LTX-2

🔹 Models citing this paper:
https://huggingface.co/Lightricks/LTX-2
https://huggingface.co/unsloth/LTX-2-GGUF
https://huggingface.co/Lightricks/LTX-2-19b-IC-LoRA-Canny-Control

Spaces citing this paper:
https://huggingface.co/spaces/Lightricks/ltx-2-distilled
https://huggingface.co/spaces/Lightricks/ltx-2
https://huggingface.co/spaces/alexnasa/ltx-2-TURBO

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
SimpleMem: Efficient Lifelong Memory for LLM Agents

📝 Summary:
To support reliable long-term interaction in complex environments, LLM agents require memory systems that efficiently manage historical experiences. Existing approaches either retain full interaction ...

🔹 Publication Date: Published on Jan 5

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2601.02553
• PDF: https://arxiv.org/pdf/2601.02553
• Project Page: https://aiming-lab.github.io/SimpleMem-Page/
• Github: https://aiming-lab.github.io/SimpleMem-Page/

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
SmolDocling: An ultra-compact vision-language model for end-to-end multi-modal document conversion

📝 Summary:
SmolDocling is a compact vision-language model that performs end-to-end document conversion with robust performance across various document types using 256M parameters and a new markup format. AI-gene...

🔹 Publication Date: Published on Mar 14, 2025

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2503.11576
• PDF: https://huggingface.co/papers/2502.18443
• Project Page: https://huggingface.co/spaces/docling-project/SmolDocling-256M-Demo
• Github: https://github.com/docling-project/docling

🔹 Models citing this paper:
https://huggingface.co/docling-project/SmolDocling-256M-preview
https://huggingface.co/ibm-granite/granite-docling-258M
https://huggingface.co/prithivMLmods/granite-docling-258M-f32-GGUF

Datasets citing this paper:
https://huggingface.co/datasets/HuggingFaceM4/DoclingMatix
https://huggingface.co/datasets/docling-project/SynthCodeNet
https://huggingface.co/datasets/docling-project/SynthFormulaNet

Spaces citing this paper:
https://huggingface.co/spaces/ibm-granite/granite-docling-258m-demo
https://huggingface.co/spaces/ibm-granite/granite-docling-258M-WebGPU
https://huggingface.co/spaces/docling-project/SmolDocling-256M-Demo

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
VideoRAG: Retrieval-Augmented Generation with Extreme Long-Context Videos

📝 Summary:
VideoRAG enhances large language models for multi-modal video processing with a dual-channel architecture that integrates textual knowledge grounding and multi-modal context encoding. AI-generated sum...

🔹 Publication Date: Published on Feb 3, 2025

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2502.01549
• PDF: https://arxiv.org/pdf/2502.01549
• Github: https://github.com/hkuds/videorag

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
Agent READMEs: An Empirical Study of Context Files for Agentic Coding

📝 Summary:
Agentic coding tools receive goals written in natural language as input, break them down into specific tasks, and write or execute the actual code with minimal human intervention. Central to this proc...

🔹 Publication Date: Published on Nov 17, 2025

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2511.12884
• PDF: https://arxiv.org/pdf/2511.12884
• Project Page: https://huggingface.co/papers/2511.03404
• Github: https://github.com/openai/agents.md

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
Bitnet.cpp: Efficient Edge Inference for Ternary LLMs

📝 Summary:
Bitnet.cpp enhances edge inference for ternary LLMs using a novel mixed-precision matrix multiplication library, achieving significant speed improvements over baselines. AI-generated summary The adven...

🔹 Publication Date: Published on Feb 17, 2025

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2502.11880
• PDF: https://arxiv.org/pdf/2502.11880
• Github: https://github.com/microsoft/BitNet/tree/paper

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
BitNet Distillation

📝 Summary:
BitNet Distillation fine-tunes large language models to 1.58-bit precision using SubLN, multi-head attention distillation, and continual pre-training, achieving comparable performance with significant...

🔹 Publication Date: Published on Oct 15, 2025

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.13998
• PDF: https://arxiv.org/pdf/2510.13998
• Github: https://github.com/microsoft/BitNet

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research
PaddleOCR-VL: Boosting Multilingual Document Parsing via a 0.9B Ultra-Compact Vision-Language Model

📝 Summary:
PaddleOCR-VL, a vision-language model combining NaViT-style dynamic resolution and ERNIE, achieves state-of-the-art performance in document parsing and element recognition with high efficiency. AI-gen...

🔹 Publication Date: Published on Oct 16, 2025

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.14528
• PDF: https://arxiv.org/pdf/2510.14528
• Github: https://github.com/PaddlePaddle/PaddleOCR

🔹 Models citing this paper:
https://huggingface.co/PaddlePaddle/PaddleOCR-VL
https://huggingface.co/PaddlePaddle/PP-DocLayoutV2
https://huggingface.co/unsloth/PaddleOCR-VL

Spaces citing this paper:
https://huggingface.co/spaces/PaddlePaddle/PaddleOCR-VL_Online_Demo
https://huggingface.co/spaces/seanpedrickcase/document_redaction
https://huggingface.co/spaces/markobinario/PaddleOCR-VL_Online_Demo

==================================

For more data science resources:
https://t.me/DataScienceT

#AI #DataScience #MachineLearning #HuggingFace #Research