πΉ Title: Knocking-Heads Attention
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23052
β’ PDF: https://arxiv.org/pdf/2510.23052
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23052
β’ PDF: https://arxiv.org/pdf/2510.23052
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: LightBagel: A Light-weighted, Double Fusion Framework for Unified Multimodal Understanding and Generation
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22946
β’ PDF: https://arxiv.org/pdf/2510.22946
β’ Project Page: https://ucsc-vlaa.github.io/LightBagel/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22946
β’ PDF: https://arxiv.org/pdf/2510.22946
β’ Project Page: https://ucsc-vlaa.github.io/LightBagel/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: LongCat-Video Technical Report
πΉ Publication Date: Published on Oct 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22200
β’ PDF: https://arxiv.org/pdf/2510.22200
β’ Github: https://github.com/meituan-longcat/LongCat-Video
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22200
β’ PDF: https://arxiv.org/pdf/2510.22200
β’ Github: https://github.com/meituan-longcat/LongCat-Video
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Lookahead Anchoring: Preserving Character Identity in Audio-Driven Human Animation
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23581
β’ PDF: https://arxiv.org/pdf/2510.23581
β’ Project Page: https://lookahead-anchoring.github.io/
β’ Github: https://lookahead-anchoring.github.io/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23581
β’ PDF: https://arxiv.org/pdf/2510.23581
β’ Project Page: https://lookahead-anchoring.github.io/
β’ Github: https://lookahead-anchoring.github.io/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23605
β’ PDF: https://arxiv.org/pdf/2510.23605
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23605
β’ PDF: https://arxiv.org/pdf/2510.23605
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: VoMP: Predicting Volumetric Mechanical Property Fields
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22975
β’ PDF: https://arxiv.org/pdf/2510.22975
β’ Project Page: https://research.nvidia.com/labs/sil/projects/vomp
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22975
β’ PDF: https://arxiv.org/pdf/2510.22975
β’ Project Page: https://research.nvidia.com/labs/sil/projects/vomp
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: A Survey of Data Agents: Emerging Paradigm or Overstated Hype?
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23587
β’ PDF: https://arxiv.org/pdf/2510.23587
β’ Github: https://github.com/HKUSTDial/awesome-data-agents
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23587
β’ PDF: https://arxiv.org/pdf/2510.23587
β’ Github: https://github.com/HKUSTDial/awesome-data-agents
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Code Aesthetics with Agentic Reward Feedback
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23272
β’ PDF: https://arxiv.org/pdf/2510.23272
β’ Project Page: https://bangx7.github.io/code-aesthetics/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23272
β’ PDF: https://arxiv.org/pdf/2510.23272
β’ Project Page: https://bangx7.github.io/code-aesthetics/
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Memory-based Language Models: An Efficient, Explainable, and Eco-friendly Approach to Large Language Modeling
πΉ Publication Date: Published on Oct 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22317
β’ PDF: https://arxiv.org/pdf/2510.22317
β’ Github: https://github.com/antalvdb/olifant
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22317
β’ PDF: https://arxiv.org/pdf/2510.22317
β’ Github: https://github.com/antalvdb/olifant
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Mitigating Attention Sinks and Massive Activations in Audio-Visual Speech Recognition with LLMS
πΉ Publication Date: Published on Oct 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22603
β’ PDF: https://arxiv.org/pdf/2510.22603
β’ Github: https://github.com/umbertocappellazzo/Llama-AVSR
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22603
β’ PDF: https://arxiv.org/pdf/2510.22603
β’ Github: https://github.com/umbertocappellazzo/Llama-AVSR
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
π€π§ Free for 1 Year: ChatGPT Goβs Big Move in India
ποΈ 28 Oct 2025
π AI News & Trends
On 28 October 2025, OpenAI announced that its mid-tier subscription plan, ChatGPT Go, will be available free for one full year in India starting from 4 November. (www.ndtv.com) What is ChatGPT Go? Whatβs the deal? Why this matters ? Things to check / caveats What should users do? Broader implications This move by OpenAI indicates ...
#ChatGPTGo #OpenAI #India #FreeAccess #ArtificialIntelligence #TechNews
ποΈ 28 Oct 2025
π AI News & Trends
On 28 October 2025, OpenAI announced that its mid-tier subscription plan, ChatGPT Go, will be available free for one full year in India starting from 4 November. (www.ndtv.com) What is ChatGPT Go? Whatβs the deal? Why this matters ? Things to check / caveats What should users do? Broader implications This move by OpenAI indicates ...
#ChatGPTGo #OpenAI #India #FreeAccess #ArtificialIntelligence #TechNews
πΉ Title: The Best of N Worlds: Aligning Reinforcement Learning with Best-of-N Sampling via max@k Optimisation
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23393
β’ PDF: https://arxiv.org/pdf/2510.23393
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 27
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.23393
β’ PDF: https://arxiv.org/pdf/2510.23393
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: EchoDistill: Bidirectional Concept Distillation for One-Step Diffusion Personalization
πΉ Publication Date: Published on Oct 23
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.20512
β’ PDF: https://arxiv.org/pdf/2510.20512
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 23
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.20512
β’ PDF: https://arxiv.org/pdf/2510.20512
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: DiffusionLane: Diffusion Model for Lane Detection
πΉ Publication Date: Published on Oct 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22236
β’ PDF: https://arxiv.org/pdf/2510.22236
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 25
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22236
β’ PDF: https://arxiv.org/pdf/2510.22236
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
π1
πΉ Title: Scaling Laws for Deepfake Detection
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16320
β’ PDF: https://arxiv.org/pdf/2510.16320
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 18
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.16320
β’ PDF: https://arxiv.org/pdf/2510.16320
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
π1
πΉ Title: SyncHuman: Synchronizing 2D and 3D Generative Models for Single-view Human Reconstruction
πΉ Publication Date: Published on Oct 9
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.07723
β’ PDF: https://arxiv.org/pdf/2510.07723
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 9
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.07723
β’ PDF: https://arxiv.org/pdf/2510.07723
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
π₯1
πΉ Title: Once Upon an Input: Reasoning via Per-Instance Program Synthesis
πΉ Publication Date: Published on Oct 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22849
β’ PDF: https://arxiv.org/pdf/2510.22849
β’ Github: https://github.com/adaminsky/pips
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22849
β’ PDF: https://arxiv.org/pdf/2510.22849
β’ Github: https://github.com/adaminsky/pips
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€2
πΉ Title: Open Multimodal Retrieval-Augmented Factual Image Generation
πΉ Publication Date: Published on Oct 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22521
β’ PDF: https://arxiv.org/pdf/2510.22521
β’ Project Page: https://tyangjn.github.io/orig.github.io/
β’ Github: https://github.com/TyangJN/ORIG
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/TyangJN/FIG
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 26
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22521
β’ PDF: https://arxiv.org/pdf/2510.22521
β’ Project Page: https://tyangjn.github.io/orig.github.io/
β’ Github: https://github.com/TyangJN/ORIG
πΉ Datasets citing this paper:
β’ https://huggingface.co/datasets/TyangJN/FIG
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
π1
πΉ Title: FlowOpt: Fast Optimization Through Whole Flow Processes for Training-Free Editing
πΉ Publication Date: Published on Oct 24
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22010
β’ PDF: https://arxiv.org/pdf/2510.22010
β’ Project Page: https://orronai.github.io/FlowOpt/
β’ Github: https://github.com/orronai/FlowOpt
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
β’ https://huggingface.co/spaces/orronai/FlowOpt
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 24
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.22010
β’ PDF: https://arxiv.org/pdf/2510.22010
β’ Project Page: https://orronai.github.io/FlowOpt/
β’ Github: https://github.com/orronai/FlowOpt
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
β’ https://huggingface.co/spaces/orronai/FlowOpt
==================================
For more data science resources:
β https://t.me/DataScienceT
β€2
π€π§ Agent Lightning By Microsoft: Reinforcement Learning Framework to Train Any AI Agent
ποΈ 28 Oct 2025
π Agentic AI
Artificial Intelligence (AI) is rapidly moving from static models to intelligent agents capable of reasoning, adapting, and performing complex, real-world tasks. However, training these agents effectively remains a major challenge. Most frameworks today tightly couple the agentβs logic with training processes making it hard to scale or transfer across use cases. Enter Agent Lightning, a ...
#AgentLightning #Microsoft #ReinforcementLearning #AIAgents #ArtificialIntelligence #MachineLearning
ποΈ 28 Oct 2025
π Agentic AI
Artificial Intelligence (AI) is rapidly moving from static models to intelligent agents capable of reasoning, adapting, and performing complex, real-world tasks. However, training these agents effectively remains a major challenge. Most frameworks today tightly couple the agentβs logic with training processes making it hard to scale or transfer across use cases. Enter Agent Lightning, a ...
#AgentLightning #Microsoft #ReinforcementLearning #AIAgents #ArtificialIntelligence #MachineLearning
π€π§ PandasAI: Transforming Data Analysis with Conversational Artificial Intelligence
ποΈ 28 Oct 2025
π AI News & Trends
In a world dominated by data, the ability to analyze and interpret information efficiently has become a core competitive advantage. From business intelligence dashboards to large-scale machine learning models, data-driven decision-making fuels innovation across industries. Yet, for most people, data analysis remains a technical challenge requiring coding expertise, statistical knowledge and familiarity with libraries like ...
#PandasAI #ConversationalAI #DataAnalysis #ArtificialIntelligence #DataScience #MachineLearning
ποΈ 28 Oct 2025
π AI News & Trends
In a world dominated by data, the ability to analyze and interpret information efficiently has become a core competitive advantage. From business intelligence dashboards to large-scale machine learning models, data-driven decision-making fuels innovation across industries. Yet, for most people, data analysis remains a technical challenge requiring coding expertise, statistical knowledge and familiarity with libraries like ...
#PandasAI #ConversationalAI #DataAnalysis #ArtificialIntelligence #DataScience #MachineLearning