ML Research Hub
32.8K subscribers
4.31K photos
260 videos
23 files
4.65K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ€–πŸ§  Reinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers Arun Shankar, AI Engineer at Google

πŸ—“οΈ 27 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence is evolving rapidly and at the center of this evolution is Reinforcement Learning (RL), the science of teaching machines to make better decisions through experience and feedback. In β€œReinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers”, Arun Shankar, an Applied AI Engineer at Google presents one of the ...

#ReinforcementLearning #LargeLanguageModels #ArtificialIntelligence #MachineLearning #AIEngineer #Google
πŸ”Ή Title: VITA-E: Natural Embodied Interaction with Concurrent Seeing, Hearing, Speaking, and Acting

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21817
β€’ PDF: https://arxiv.org/pdf/2510.21817
β€’ Project Page: https://lxysl.github.io/VITA-E/
β€’ Github: https://github.com/Tencent/VITA/tree/VITA-E

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Language Server CLI Empowers Language Agents with Process Rewards

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22907
β€’ PDF: https://arxiv.org/pdf/2510.22907
β€’ Github: https://yifanzhang-pro.github.io/lanser-cli

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23451
β€’ PDF: https://arxiv.org/pdf/2510.23451
β€’ Github: https://github.com/HongbangYuan/OmniReward

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MARS-M: When Variance Reduction Meets Matrices

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21800
β€’ PDF: https://arxiv.org/pdf/2510.21800
β€’ Project Page: https://github.com/AGI-Arena/MARS/tree/main/MARS_M
β€’ Github: https://github.com/AGI-Arena/MARS/tree/main/MARS_M

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23607
β€’ PDF: https://arxiv.org/pdf/2510.23607
β€’ Project Page: https://pointcept.github.io/Concerto/
β€’ Github: https://github.com/Pointcept/Pointcept

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: FARMER: Flow AutoRegressive Transformer over Pixels

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23588
β€’ PDF: https://arxiv.org/pdf/2510.23588

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: IGGT: Instance-Grounded Geometry Transformer for Semantic 3D Reconstruction

πŸ”Ή Publication Date: Published on Oct 26

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22706
β€’ PDF: https://arxiv.org/pdf/2510.22706
β€’ Github: https://github.com/lifuguan/IGGT_official

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: E^2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker

πŸ”Ή Publication Date: Published on Oct 26

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22733
β€’ PDF: https://arxiv.org/pdf/2510.22733
β€’ Project Page: https://alibaba-nlp.github.io/E2Rank/
β€’ Github: https://alibaba-nlp.github.io/E2Rank

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: PixelRefer: A Unified Framework for Spatio-Temporal Object Referring with Arbitrary Granularity

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23603
β€’ PDF: https://arxiv.org/pdf/2510.23603
β€’ Project Page: https://circleradon.github.io/PixelRefer/
β€’ Github: https://github.com/alibaba-damo-academy/PixelRefer

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LimRank: Less is More for Reasoning-Intensive Information Reranking

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23544
β€’ PDF: https://arxiv.org/pdf/2510.23544

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: RobotArena infty: Scalable Robot Benchmarking via Real-to-Sim Translation

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23571
β€’ PDF: https://arxiv.org/pdf/2510.23571

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Distilled Decoding 2: One-step Sampling of Image Auto-regressive Models with Conditional Score Distillation

πŸ”Ή Publication Date: Published on Oct 23

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21003
β€’ PDF: https://arxiv.org/pdf/2510.21003
β€’ Github: https://imagination-research.github.io/distilled-decoding/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: PRISM-Bench: A Benchmark of Puzzle-Based Visual Tasks with CoT Error Detection

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23594
β€’ PDF: https://arxiv.org/pdf/2510.23594
β€’ Github: https://github.com/JornyWan/PRISM-Bench

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ReCode: Unify Plan and Action for Universal Granularity Control

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23564
β€’ PDF: https://arxiv.org/pdf/2510.23564

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Knocking-Heads Attention

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23052
β€’ PDF: https://arxiv.org/pdf/2510.23052

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LightBagel: A Light-weighted, Double Fusion Framework for Unified Multimodal Understanding and Generation

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22946
β€’ PDF: https://arxiv.org/pdf/2510.22946
β€’ Project Page: https://ucsc-vlaa.github.io/LightBagel/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LongCat-Video Technical Report

πŸ”Ή Publication Date: Published on Oct 25

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22200
β€’ PDF: https://arxiv.org/pdf/2510.22200
β€’ Github: https://github.com/meituan-longcat/LongCat-Video

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Lookahead Anchoring: Preserving Character Identity in Audio-Driven Human Animation

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23581
β€’ PDF: https://arxiv.org/pdf/2510.23581
β€’ Project Page: https://lookahead-anchoring.github.io/
β€’ Github: https://lookahead-anchoring.github.io/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23605
β€’ PDF: https://arxiv.org/pdf/2510.23605

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: VoMP: Predicting Volumetric Mechanical Property Fields

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22975
β€’ PDF: https://arxiv.org/pdf/2510.22975
β€’ Project Page: https://research.nvidia.com/labs/sil/projects/vomp

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT