ML Research Hub
32.8K subscribers
4.31K photos
263 videos
23 files
4.66K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Forwarded from Machine Learning
Sepp Hochreiter, who invented LSTM 30+ year ago, gave a keynote talk at Neurips 2024 and introduced xLSTM (Extended Long Short-Term Memory).

I designed this Excel exercise to help you understand how xLSTM works.

More: https://www.byhand.ai/p/xlstm
πŸ€–πŸ§  Qwen3-VL-8B-Instruct β€” The Next Generation of Vision-Language Intelligence by Qwen

πŸ—“οΈ 27 Oct 2025
πŸ“š AI News & Trends

In the rapidly evolving landscape of multimodal AI, Qwen3-VL-8B-Instruct stands out as a groundbreaking leap forward. Developed by Qwen, this model represents the most advanced vision-language (VL) system in the Qwen series to date. As artificial intelligence continues to bridge the gap between text and vision, Qwen3-VL-8B-Instruct emerges as a powerful engine capable of comprehending ...

#Qwen3VL #VisionLanguageAI #MultimodalAI #AISystems #QwenSeries #NextGenAI
πŸ”Ή Title: Redefining Retrieval Evaluation in the Era of LLMs

πŸ”Ή Publication Date: Published on Oct 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21440
β€’ PDF: https://arxiv.org/pdf/2510.21440
β€’ Github: https://github.com/GiovanniTRA/UDCG

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ€–πŸ§  LangExtract by Google: Transforming Unstructured Text into Structured Data with LLM Precision

πŸ—“οΈ 27 Oct 2025
πŸ“š AI News & Trends

In the world of data-driven decision-making, one of the biggest challenges lies in extracting meaningful insights from unstructured text β€” documents, reports, emails or articles that lack consistent structure. Manually organizing this information is both time-consuming and prone to errors. Enter LangExtract, an advanced Python library by Google that leverages Large Language Models (LLMs) like ...

#LangExtract #LLM #StructuredData #UnstructuredText #PythonLibrary #GoogleAI
πŸ€–πŸ§  AI Projects : A Comprehensive Showcase of Machine Learning, Deep Learning and Generative AI

πŸ—“οΈ 27 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether it’s predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...

#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
πŸ€–πŸ§  Reinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers Arun Shankar, AI Engineer at Google

πŸ—“οΈ 27 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence is evolving rapidly and at the center of this evolution is Reinforcement Learning (RL), the science of teaching machines to make better decisions through experience and feedback. In β€œReinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers”, Arun Shankar, an Applied AI Engineer at Google presents one of the ...

#ReinforcementLearning #LargeLanguageModels #ArtificialIntelligence #MachineLearning #AIEngineer #Google
πŸ”Ή Title: VITA-E: Natural Embodied Interaction with Concurrent Seeing, Hearing, Speaking, and Acting

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21817
β€’ PDF: https://arxiv.org/pdf/2510.21817
β€’ Project Page: https://lxysl.github.io/VITA-E/
β€’ Github: https://github.com/Tencent/VITA/tree/VITA-E

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Language Server CLI Empowers Language Agents with Process Rewards

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22907
β€’ PDF: https://arxiv.org/pdf/2510.22907
β€’ Github: https://yifanzhang-pro.github.io/lanser-cli

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23451
β€’ PDF: https://arxiv.org/pdf/2510.23451
β€’ Github: https://github.com/HongbangYuan/OmniReward

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MARS-M: When Variance Reduction Meets Matrices

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21800
β€’ PDF: https://arxiv.org/pdf/2510.21800
β€’ Project Page: https://github.com/AGI-Arena/MARS/tree/main/MARS_M
β€’ Github: https://github.com/AGI-Arena/MARS/tree/main/MARS_M

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23607
β€’ PDF: https://arxiv.org/pdf/2510.23607
β€’ Project Page: https://pointcept.github.io/Concerto/
β€’ Github: https://github.com/Pointcept/Pointcept

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: FARMER: Flow AutoRegressive Transformer over Pixels

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23588
β€’ PDF: https://arxiv.org/pdf/2510.23588

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: IGGT: Instance-Grounded Geometry Transformer for Semantic 3D Reconstruction

πŸ”Ή Publication Date: Published on Oct 26

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22706
β€’ PDF: https://arxiv.org/pdf/2510.22706
β€’ Github: https://github.com/lifuguan/IGGT_official

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: E^2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker

πŸ”Ή Publication Date: Published on Oct 26

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22733
β€’ PDF: https://arxiv.org/pdf/2510.22733
β€’ Project Page: https://alibaba-nlp.github.io/E2Rank/
β€’ Github: https://alibaba-nlp.github.io/E2Rank

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: PixelRefer: A Unified Framework for Spatio-Temporal Object Referring with Arbitrary Granularity

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23603
β€’ PDF: https://arxiv.org/pdf/2510.23603
β€’ Project Page: https://circleradon.github.io/PixelRefer/
β€’ Github: https://github.com/alibaba-damo-academy/PixelRefer

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: LimRank: Less is More for Reasoning-Intensive Information Reranking

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23544
β€’ PDF: https://arxiv.org/pdf/2510.23544

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: RobotArena infty: Scalable Robot Benchmarking via Real-to-Sim Translation

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23571
β€’ PDF: https://arxiv.org/pdf/2510.23571

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Distilled Decoding 2: One-step Sampling of Image Auto-regressive Models with Conditional Score Distillation

πŸ”Ή Publication Date: Published on Oct 23

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21003
β€’ PDF: https://arxiv.org/pdf/2510.21003
β€’ Github: https://imagination-research.github.io/distilled-decoding/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: PRISM-Bench: A Benchmark of Puzzle-Based Visual Tasks with CoT Error Detection

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23594
β€’ PDF: https://arxiv.org/pdf/2510.23594
β€’ Github: https://github.com/JornyWan/PRISM-Bench

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ReCode: Unify Plan and Action for Universal Granularity Control

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23564
β€’ PDF: https://arxiv.org/pdf/2510.23564

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Knocking-Heads Attention

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23052
β€’ PDF: https://arxiv.org/pdf/2510.23052

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT