ML Research Hub
32.8K subscribers
4.31K photos
260 videos
23 files
4.66K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: Reasoning with Sampling: Your Base Model is Smarter Than You Think

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.14901
β€’ PDF: https://arxiv.org/pdf/2510.14901
β€’ Project Page: https://aakaran.github.io/reasoning_with_sampling/
β€’ Github: https://github.com/aakaran/reasoning-with-sampling

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost

πŸ”Ή Publication Date: Published on Oct 23

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.20780
β€’ PDF: https://arxiv.org/pdf/2510.20780
β€’ Github: https://github.com/NLP2CT/ThinMQM

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/rzzhan/ThinMQM-12k

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Sample By Step, Optimize By Chunk: Chunk-Level GRPO For Text-to-Image Generation

πŸ”Ή Publication Date: Published on Oct 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21583
β€’ PDF: https://arxiv.org/pdf/2510.21583

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: PhysVLM-AVR: Active Visual Reasoning for Multimodal Large Language Models in Physical Environments

πŸ”Ή Publication Date: Published on Oct 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21111
β€’ PDF: https://arxiv.org/pdf/2510.21111

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Soft Instruction De-escalation Defense

πŸ”Ή Publication Date: Published on Oct 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21057
β€’ PDF: https://arxiv.org/pdf/2510.21057

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Foley Control: Aligning a Frozen Latent Text-to-Audio Model to Video

πŸ”Ή Publication Date: Published on Oct 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21581
β€’ PDF: https://arxiv.org/pdf/2510.21581
β€’ Github: https://stability-ai.github.io/foleycontrol.github.io/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Stabilizing MoE Reinforcement Learning by Aligning Training and Inference Routers

πŸ”Ή Publication Date: Published on Oct 13

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.11370
β€’ PDF: https://arxiv.org/pdf/2510.11370

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ALICE-LRI: A General Method for Lossless Range Image Generation for Spinning LiDAR Sensors without Calibration Metadata

πŸ”Ή Publication Date: Published on Oct 23

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.20708
β€’ PDF: https://arxiv.org/pdf/2510.20708
β€’ Project Page: https://alice-lri.github.io/alice-lri/
β€’ Github: https://github.com/alice-lri/alice-lri

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
Forwarded from Machine Learning
Sepp Hochreiter, who invented LSTM 30+ year ago, gave a keynote talk at Neurips 2024 and introduced xLSTM (Extended Long Short-Term Memory).

I designed this Excel exercise to help you understand how xLSTM works.

More: https://www.byhand.ai/p/xlstm
πŸ€–πŸ§  Qwen3-VL-8B-Instruct β€” The Next Generation of Vision-Language Intelligence by Qwen

πŸ—“οΈ 27 Oct 2025
πŸ“š AI News & Trends

In the rapidly evolving landscape of multimodal AI, Qwen3-VL-8B-Instruct stands out as a groundbreaking leap forward. Developed by Qwen, this model represents the most advanced vision-language (VL) system in the Qwen series to date. As artificial intelligence continues to bridge the gap between text and vision, Qwen3-VL-8B-Instruct emerges as a powerful engine capable of comprehending ...

#Qwen3VL #VisionLanguageAI #MultimodalAI #AISystems #QwenSeries #NextGenAI
πŸ”Ή Title: Redefining Retrieval Evaluation in the Era of LLMs

πŸ”Ή Publication Date: Published on Oct 24

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21440
β€’ PDF: https://arxiv.org/pdf/2510.21440
β€’ Github: https://github.com/GiovanniTRA/UDCG

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ€–πŸ§  LangExtract by Google: Transforming Unstructured Text into Structured Data with LLM Precision

πŸ—“οΈ 27 Oct 2025
πŸ“š AI News & Trends

In the world of data-driven decision-making, one of the biggest challenges lies in extracting meaningful insights from unstructured text β€” documents, reports, emails or articles that lack consistent structure. Manually organizing this information is both time-consuming and prone to errors. Enter LangExtract, an advanced Python library by Google that leverages Large Language Models (LLMs) like ...

#LangExtract #LLM #StructuredData #UnstructuredText #PythonLibrary #GoogleAI
πŸ€–πŸ§  AI Projects : A Comprehensive Showcase of Machine Learning, Deep Learning and Generative AI

πŸ—“οΈ 27 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether it’s predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...

#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
πŸ€–πŸ§  Reinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers Arun Shankar, AI Engineer at Google

πŸ—“οΈ 27 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence is evolving rapidly and at the center of this evolution is Reinforcement Learning (RL), the science of teaching machines to make better decisions through experience and feedback. In β€œReinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers”, Arun Shankar, an Applied AI Engineer at Google presents one of the ...

#ReinforcementLearning #LargeLanguageModels #ArtificialIntelligence #MachineLearning #AIEngineer #Google
πŸ”Ή Title: VITA-E: Natural Embodied Interaction with Concurrent Seeing, Hearing, Speaking, and Acting

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21817
β€’ PDF: https://arxiv.org/pdf/2510.21817
β€’ Project Page: https://lxysl.github.io/VITA-E/
β€’ Github: https://github.com/Tencent/VITA/tree/VITA-E

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Language Server CLI Empowers Language Agents with Process Rewards

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22907
β€’ PDF: https://arxiv.org/pdf/2510.22907
β€’ Github: https://yifanzhang-pro.github.io/lanser-cli

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23451
β€’ PDF: https://arxiv.org/pdf/2510.23451
β€’ Github: https://github.com/HongbangYuan/OmniReward

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MARS-M: When Variance Reduction Meets Matrices

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.21800
β€’ PDF: https://arxiv.org/pdf/2510.21800
β€’ Project Page: https://github.com/AGI-Arena/MARS/tree/main/MARS_M
β€’ Github: https://github.com/AGI-Arena/MARS/tree/main/MARS_M

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23607
β€’ PDF: https://arxiv.org/pdf/2510.23607
β€’ Project Page: https://pointcept.github.io/Concerto/
β€’ Github: https://github.com/Pointcept/Pointcept

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: FARMER: Flow AutoRegressive Transformer over Pixels

πŸ”Ή Publication Date: Published on Oct 27

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.23588
β€’ PDF: https://arxiv.org/pdf/2510.23588

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: IGGT: Instance-Grounded Geometry Transformer for Semantic 3D Reconstruction

πŸ”Ή Publication Date: Published on Oct 26

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.22706
β€’ PDF: https://arxiv.org/pdf/2510.22706
β€’ Github: https://github.com/lifuguan/IGGT_official

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT