ML Research Hub
32.8K subscribers
4.32K photos
263 videos
23 files
4.67K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: AlphaOPT: Formulating Optimization Programs with Self-Improving LLM Experience Library

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18428
β€’ PDF: https://arxiv.org/pdf/2510.18428

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: BAPO: Stabilizing Off-Policy Reinforcement Learning for LLMs via Balanced Policy Optimization with Adaptive Clipping

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18927
β€’ PDF: https://arxiv.org/pdf/2510.18927
β€’ Project Page: https://github.com/WooooDyy/BAPO
β€’ Github: https://github.com/WooooDyy/BAPO

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18941
β€’ PDF: https://arxiv.org/pdf/2510.18941

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/nvidia/ProfBench

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: NeuroAda: Activating Each Neuron's Potential for Parameter-Efficient Fine-Tuning

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18940
β€’ PDF: https://arxiv.org/pdf/2510.18940
β€’ Github: https://github.com/FightingFighting/NeuroAda.git

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: RIR-Mega: a large-scale simulated room impulse response dataset for machine learning and room acoustics modeling

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18917
β€’ PDF: https://arxiv.org/pdf/2510.18917
β€’ Project Page: https://doi.org/10.5281/zenodo.17387402
β€’ Github: https://github.com/mandip42/rirmega

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/mandipgoswami/rirmega

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Are they lovers or friends? Evaluating LLMs' Social Reasoning in English and Korean Dialogues

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19028
β€’ PDF: https://arxiv.org/pdf/2510.19028
β€’ Github: https://github.com/rladmstn1714/SCRIPTS

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/EunsuKim/SCRIPTS

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Learning from the Best, Differently: A Diversity-Driven Rethinking on Data Selection

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18909
β€’ PDF: https://arxiv.org/pdf/2510.18909

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: When Do Transformers Learn Heuristics for Graph Connectivity?

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19753
β€’ PDF: https://arxiv.org/pdf/2510.19753

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Machine Text Detectors are Membership Inference Attacks

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19492
β€’ PDF: https://arxiv.org/pdf/2510.19492
β€’ Github: https://github.com/ryuryukke/mint

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: GigaBrain-0: A World Model-Powered Vision-Language-Action Model

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19430
β€’ PDF: https://arxiv.org/pdf/2510.19430
β€’ Project Page: https://gigabrain0.github.io/
β€’ Github: https://github.com/open-gigaai/giga-brain-0

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: From Charts to Code: A Hierarchical Benchmark for Multimodal Models

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17932
β€’ PDF: https://arxiv.org/pdf/2510.17932
β€’ Project Page: https://csu-jpg.github.io/Chart2Code.github.io/
β€’ Github: https://github.com/CSU-JPG/Chart2Code

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/CSU-JPG/Chart2Code

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Attention Sinks in Diffusion Language Models

πŸ”Ή Publication Date: Published on Oct 17

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15731
β€’ PDF: https://arxiv.org/pdf/2510.15731

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Directional Reasoning Injection for Fine-Tuning MLLMs

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15050
β€’ PDF: https://arxiv.org/pdf/2510.15050
β€’ Github: https://github.com/WikiChao/DRIFT

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: See the Text: From Tokenization to Visual Reading

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18840
β€’ PDF: https://arxiv.org/pdf/2510.18840

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: DeLeaker: Dynamic Inference-Time Reweighting For Semantic Leakage Mitigation in Text-to-Image Models

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15015
β€’ PDF: https://arxiv.org/pdf/2510.15015

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Language Models are Injective and Hence Invertible

πŸ”Ή Publication Date: Published on Oct 17

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15511
β€’ PDF: https://arxiv.org/pdf/2510.15511

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: Decomposed Attention Fusion in MLLMs for Training-Free Video Reasoning Segmentation

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19592
β€’ PDF: https://arxiv.org/pdf/2510.19592
β€’ Project Page: https://www.jshyun.me/projects/decaf
β€’ Github: https://github.com/HYUNJS/DecAF

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ€–πŸ§  LangGraph by LangChain-AI: The Framework Powering Stateful, Long-Running AI Agents

πŸ—“οΈ 23 Oct 2025
πŸ“š AI News & Trends

As artificial intelligence continues to reshape industries, one major challenge remains building reliable, stateful and long-running AI agents that can handle complex workflows over time. Traditional AI frameworks often focus on short interactions, lacking the infrastructure to manage persistent states, durable memory or human feedback loops. That’s where LangGraph from LangChain-AI steps in. Trusted by ...

#LangGraph #LangChainAI #AIAgents #StatefulAI #LongRunningAgents #ArtificialIntelligence
πŸ€–πŸ§  Master Machine Learning: Explore the Ultimate β€œMachine-Learning-Tutorials” Repository

πŸ—“οΈ 23 Oct 2025
πŸ“š AI News & Trends

In today’s data-driven world, Machine Learning (ML) has become the cornerstone of modern technology from intelligent chatbots to predictive analytics and recommendation systems. However, mastering ML isn’t just about coding, it requires a structured understanding of algorithms, statistics, optimization techniques and real-world problem-solving. That’s where Ujjwal Karn’s Machine-Learning-Tutorials GitHub repository stands out. This open-source, topic-wise ...

#MachineLearning #MLTutorials #ArtificialIntelligence #DataScience #OpenSource #AIEducation
πŸ”Ή Title: What Questions Should Robots Be Able to Answer? A Dataset of User Questions for Explainable Robotics

πŸ”Ή Publication Date: Published on Oct 18

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.16435
β€’ PDF: https://arxiv.org/pdf/2510.16435

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/lwachowiak/xai-questions-dataset

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Steering Autoregressive Music Generation with Recursive Feature Machines

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19127
β€’ PDF: https://arxiv.org/pdf/2510.19127
β€’ Github: https://github.com/astradzhao/music-rfm

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT