ML Research Hub
32.8K subscribers
4.29K photos
258 videos
23 files
4.63K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: Pruning Overparameterized Multi-Task Networks for Degraded Web Image Restoration

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.14463
β€’ PDF: https://arxiv.org/pdf/2510.14463
β€’ Github: https://github.com/Thomkat/MIR-L

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ€–πŸ§  Unlocking Creativity with Awesome ChatGPT Prompts: The Ultimate Guide for AI Enthusiasts

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence has transformed how we create, communicate, and innovate and at the heart of this revolution lies prompt engineering. One of the most powerful tools in this domain is the β€œAwesome ChatGPT Prompts” repository – a growing collection of creative, technical and professional prompts designed for ChatGPT and other large language models like Claude, ...

#ChatGPT #PromptEngineering #AIEnthusiasts #ArtificialIntelligence #LargeLanguageModels #AICreativity
❀1
πŸ€–πŸ§  AgentFly: The Future of Reinforcement Learning for Intelligent Language Model Agents

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

AgentFly is a cutting-edge framework developed by researchers at the Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) to revolutionize how large language models (LLMs) learn and act. It combines the power of reinforcement learning (RL) with language model agents enabling them to go beyond static prompt responses and learn through real-time feedback and experience. ...

#ReinforcementLearning #LLMs #LanguageModelAgents #ArtificialIntelligence #AgentFly #AIFramework
πŸ€–πŸ§  OpenSearch for AI Agents: Empowering Intelligent Search and Automation

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

As artificial intelligence (AI) continues to evolve, one of the most transformative shifts has been the rise of AI agents – autonomous systems capable of reasoning, interacting, and performing complex tasks. From customer support chatbots to autonomous data analysts, these agents rely heavily on efficient data retrieval mechanisms. However, traditional search systems often struggle to ...

#OpenSearch #AIAgents #IntelligentSearch #AIautomation #ArtificialIntelligence #DataRetrieval
πŸ”Ή Title: LoongRL:Reinforcement Learning for Advanced Reasoning over Long Contexts

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19363
β€’ PDF: https://arxiv.org/pdf/2510.19363

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: DaMo: Data Mixing Optimizer in Fine-tuning Multimodal LLMs for Mobile Phone Agents

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19336
β€’ PDF: https://arxiv.org/pdf/2510.19336

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: olmOCR 2: Unit Test Rewards for Document OCR

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19817
β€’ PDF: https://arxiv.org/pdf/2510.19817
β€’ Project Page: https://olmocr.allen.ai/
β€’ Github: https://github.com/allenai/olmocr

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Pico-Banana-400K: A Large-Scale Dataset for Text-Guided Image Editing

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19808
β€’ PDF: https://arxiv.org/pdf/2510.19808

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: VideoAgentTrek: Computer Use Pretraining from Unlabeled Videos

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19488
β€’ PDF: https://arxiv.org/pdf/2510.19488
β€’ Project Page: https://videoagenttrek.github.io/
β€’ Github: https://github.com/xlang-ai/VideoAgentTrek

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: TheMCPCompany: Creating General-purpose Agents with Task-specific Tools

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19286
β€’ PDF: https://arxiv.org/pdf/2510.19286
β€’ Github: https://github.com/Reza-esfandiarpoor/the-mcp-company

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19338
β€’ PDF: https://arxiv.org/pdf/2510.19338

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ColorAgent: Building A Robust, Personalized, and Interactive OS Agent

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19386
β€’ PDF: https://arxiv.org/pdf/2510.19386
β€’ Github: https://github.com/MadeAgents/mobile-use

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Unified Reinforcement and Imitation Learning for Vision-Language Models

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19307
β€’ PDF: https://arxiv.org/pdf/2510.19307
β€’ Project Page: https://byungkwanlee.github.io/RIL-page/
β€’ Github: https://byungkwanlee.github.io/RIL-page/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: MINED: Probing and Updating with Multimodal Time-Sensitive Knowledge for Large Multimodal Models

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19457
β€’ PDF: https://arxiv.org/pdf/2510.19457
β€’ Project Page: https://mined-lmm.github.io/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: KORE: Enhancing Knowledge Injection for Large Multimodal Models via Knowledge-Oriented Augmentations and Constraints

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19316
β€’ PDF: https://arxiv.org/pdf/2510.19316
β€’ Project Page: https://kore-lmm.github.io/

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: FinSight: Towards Real-World Financial Deep Research

πŸ”Ή Publication Date: Published on Oct 19

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.16844
β€’ PDF: https://arxiv.org/pdf/2510.16844

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: AlphaOPT: Formulating Optimization Programs with Self-Improving LLM Experience Library

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18428
β€’ PDF: https://arxiv.org/pdf/2510.18428

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: BAPO: Stabilizing Off-Policy Reinforcement Learning for LLMs via Balanced Policy Optimization with Adaptive Clipping

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18927
β€’ PDF: https://arxiv.org/pdf/2510.18927
β€’ Project Page: https://github.com/WooooDyy/BAPO
β€’ Github: https://github.com/WooooDyy/BAPO

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18941
β€’ PDF: https://arxiv.org/pdf/2510.18941

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/nvidia/ProfBench

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: NeuroAda: Activating Each Neuron's Potential for Parameter-Efficient Fine-Tuning

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18940
β€’ PDF: https://arxiv.org/pdf/2510.18940
β€’ Github: https://github.com/FightingFighting/NeuroAda.git

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: RIR-Mega: a large-scale simulated room impulse response dataset for machine learning and room acoustics modeling

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18917
β€’ PDF: https://arxiv.org/pdf/2510.18917
β€’ Project Page: https://doi.org/10.5281/zenodo.17387402
β€’ Github: https://github.com/mandip42/rirmega

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/mandipgoswami/rirmega

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1