π€π§ LandingAI ADE Python SDK: Streamlining AI-Powered Document Understanding
ποΈ 22 Oct 2025
π AI News & Trends
In the age of AI automation, extracting structured data from documents has become a key part of many business workflows. From invoices and contracts to identity documents and research papers, organizations are relying on AI models to interpret and process information accurately. LandingAIβs ADE Python SDK β an official API client for the LandingAI ADE ...
#AIPowered #DocumentUnderstanding #LandingAI #ADEPythonSDK #AIAutomation #DataExtraction
ποΈ 22 Oct 2025
π AI News & Trends
In the age of AI automation, extracting structured data from documents has become a key part of many business workflows. From invoices and contracts to identity documents and research papers, organizations are relying on AI models to interpret and process information accurately. LandingAIβs ADE Python SDK β an official API client for the LandingAI ADE ...
#AIPowered #DocumentUnderstanding #LandingAI #ADEPythonSDK #AIAutomation #DataExtraction
πΉ Title: Efficient Long-context Language Model Training by Core Attention Disaggregation
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18121
β’ PDF: https://arxiv.org/pdf/2510.18121
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18121
β’ PDF: https://arxiv.org/pdf/2510.18121
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Expanding the Action Space of LLMs to Reason Beyond Language
πΉ Publication Date: Published on Oct 8
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.07581
β’ PDF: https://arxiv.org/pdf/2510.07581
β’ Project Page: https://expa-rl.github.io/
β’ Github: https://github.com/yue-zhongqi/earl
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 8
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.07581
β’ PDF: https://arxiv.org/pdf/2510.07581
β’ Project Page: https://expa-rl.github.io/
β’ Github: https://github.com/yue-zhongqi/earl
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Planned Diffusion
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18087
β’ PDF: https://arxiv.org/pdf/2510.18087
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18087
β’ PDF: https://arxiv.org/pdf/2510.18087
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Unimedvl: Unifying Medical Multimodal Understanding And Generation Through Observation-Knowledge-Analysis
πΉ Publication Date: Published on Oct 17
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.15710
β’ PDF: https://arxiv.org/pdf/2510.15710
β’ Project Page: https://uni-medical.github.io/UniMedVL_Web/
β’ Github: https://github.com/uni-medical/UniMedVL
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 17
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.15710
β’ PDF: https://arxiv.org/pdf/2510.15710
β’ Project Page: https://uni-medical.github.io/UniMedVL_Web/
β’ Github: https://github.com/uni-medical/UniMedVL
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Static Sandboxes Are Inadequate: Modeling Societal Complexity Requires Open-Ended Co-Evolution in LLM-Based Multi-Agent Simulations
πΉ Publication Date: Published on Oct 15
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.13982
β’ PDF: https://arxiv.org/pdf/2510.13982
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 15
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.13982
β’ PDF: https://arxiv.org/pdf/2510.13982
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Any-Depth Alignment: Unlocking Innate Safety Alignment of LLMs to Any-Depth
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18081
β’ PDF: https://arxiv.org/pdf/2510.18081
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 20
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.18081
β’ PDF: https://arxiv.org/pdf/2510.18081
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Predicting the Unpredictable: Reproducible BiLSTM Forecasting of Incident Counts in the Global Terrorism Database (GTD)
πΉ Publication Date: Published on Oct 16
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.15136
β’ PDF: https://arxiv.org/pdf/2510.15136
β’ Github: https://github.com/Davidavid45/Deep-Learning-in-Counterterrorism
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 16
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.15136
β’ PDF: https://arxiv.org/pdf/2510.15136
β’ Github: https://github.com/Davidavid45/Deep-Learning-in-Counterterrorism
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
πΉ Title: When "Correct" Is Not Safe: Can We Trust Functionally Correct Patches Generated by Code Agents?
πΉ Publication Date: Published on Oct 15
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17862
β’ PDF: https://arxiv.org/pdf/2510.17862
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 15
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.17862
β’ PDF: https://arxiv.org/pdf/2510.17862
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Pruning Overparameterized Multi-Task Networks for Degraded Web Image Restoration
πΉ Publication Date: Published on Oct 16
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.14463
β’ PDF: https://arxiv.org/pdf/2510.14463
β’ Github: https://github.com/Thomkat/MIR-L
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 16
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.14463
β’ PDF: https://arxiv.org/pdf/2510.14463
β’ Github: https://github.com/Thomkat/MIR-L
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
β€1
π€π§ Unlocking Creativity with Awesome ChatGPT Prompts: The Ultimate Guide for AI Enthusiasts
ποΈ 22 Oct 2025
π AI News & Trends
Artificial Intelligence has transformed how we create, communicate, and innovate and at the heart of this revolution lies prompt engineering. One of the most powerful tools in this domain is the βAwesome ChatGPT Promptsβ repository β a growing collection of creative, technical and professional prompts designed for ChatGPT and other large language models like Claude, ...
#ChatGPT #PromptEngineering #AIEnthusiasts #ArtificialIntelligence #LargeLanguageModels #AICreativity
ποΈ 22 Oct 2025
π AI News & Trends
Artificial Intelligence has transformed how we create, communicate, and innovate and at the heart of this revolution lies prompt engineering. One of the most powerful tools in this domain is the βAwesome ChatGPT Promptsβ repository β a growing collection of creative, technical and professional prompts designed for ChatGPT and other large language models like Claude, ...
#ChatGPT #PromptEngineering #AIEnthusiasts #ArtificialIntelligence #LargeLanguageModels #AICreativity
β€1
π€π§ AgentFly: The Future of Reinforcement Learning for Intelligent Language Model Agents
ποΈ 22 Oct 2025
π AI News & Trends
AgentFly is a cutting-edge framework developed by researchers at the Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) to revolutionize how large language models (LLMs) learn and act. It combines the power of reinforcement learning (RL) with language model agents enabling them to go beyond static prompt responses and learn through real-time feedback and experience. ...
#ReinforcementLearning #LLMs #LanguageModelAgents #ArtificialIntelligence #AgentFly #AIFramework
ποΈ 22 Oct 2025
π AI News & Trends
AgentFly is a cutting-edge framework developed by researchers at the Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) to revolutionize how large language models (LLMs) learn and act. It combines the power of reinforcement learning (RL) with language model agents enabling them to go beyond static prompt responses and learn through real-time feedback and experience. ...
#ReinforcementLearning #LLMs #LanguageModelAgents #ArtificialIntelligence #AgentFly #AIFramework
π€π§ OpenSearch for AI Agents: Empowering Intelligent Search and Automation
ποΈ 22 Oct 2025
π AI News & Trends
As artificial intelligence (AI) continues to evolve, one of the most transformative shifts has been the rise of AI agents β autonomous systems capable of reasoning, interacting, and performing complex tasks. From customer support chatbots to autonomous data analysts, these agents rely heavily on efficient data retrieval mechanisms. However, traditional search systems often struggle to ...
#OpenSearch #AIAgents #IntelligentSearch #AIautomation #ArtificialIntelligence #DataRetrieval
ποΈ 22 Oct 2025
π AI News & Trends
As artificial intelligence (AI) continues to evolve, one of the most transformative shifts has been the rise of AI agents β autonomous systems capable of reasoning, interacting, and performing complex tasks. From customer support chatbots to autonomous data analysts, these agents rely heavily on efficient data retrieval mechanisms. However, traditional search systems often struggle to ...
#OpenSearch #AIAgents #IntelligentSearch #AIautomation #ArtificialIntelligence #DataRetrieval
πΉ Title: LoongRL:Reinforcement Learning for Advanced Reasoning over Long Contexts
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19363
β’ PDF: https://arxiv.org/pdf/2510.19363
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19363
β’ PDF: https://arxiv.org/pdf/2510.19363
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: DaMo: Data Mixing Optimizer in Fine-tuning Multimodal LLMs for Mobile Phone Agents
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19336
β’ PDF: https://arxiv.org/pdf/2510.19336
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19336
β’ PDF: https://arxiv.org/pdf/2510.19336
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: olmOCR 2: Unit Test Rewards for Document OCR
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19817
β’ PDF: https://arxiv.org/pdf/2510.19817
β’ Project Page: https://olmocr.allen.ai/
β’ Github: https://github.com/allenai/olmocr
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19817
β’ PDF: https://arxiv.org/pdf/2510.19817
β’ Project Page: https://olmocr.allen.ai/
β’ Github: https://github.com/allenai/olmocr
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Pico-Banana-400K: A Large-Scale Dataset for Text-Guided Image Editing
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19808
β’ PDF: https://arxiv.org/pdf/2510.19808
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19808
β’ PDF: https://arxiv.org/pdf/2510.19808
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: VideoAgentTrek: Computer Use Pretraining from Unlabeled Videos
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19488
β’ PDF: https://arxiv.org/pdf/2510.19488
β’ Project Page: https://videoagenttrek.github.io/
β’ Github: https://github.com/xlang-ai/VideoAgentTrek
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19488
β’ PDF: https://arxiv.org/pdf/2510.19488
β’ Project Page: https://videoagenttrek.github.io/
β’ Github: https://github.com/xlang-ai/VideoAgentTrek
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: TheMCPCompany: Creating General-purpose Agents with Task-specific Tools
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19286
β’ PDF: https://arxiv.org/pdf/2510.19286
β’ Github: https://github.com/Reza-esfandiarpoor/the-mcp-company
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19286
β’ PDF: https://arxiv.org/pdf/2510.19286
β’ Github: https://github.com/Reza-esfandiarpoor/the-mcp-company
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19338
β’ PDF: https://arxiv.org/pdf/2510.19338
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19338
β’ PDF: https://arxiv.org/pdf/2510.19338
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Title: ColorAgent: Building A Robust, Personalized, and Interactive OS Agent
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19386
β’ PDF: https://arxiv.org/pdf/2510.19386
β’ Github: https://github.com/MadeAgents/mobile-use
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT
πΉ Publication Date: Published on Oct 22
πΉ Paper Links:
β’ arXiv Page: https://arxiv.org/abs/2510.19386
β’ PDF: https://arxiv.org/pdf/2510.19386
β’ Github: https://github.com/MadeAgents/mobile-use
πΉ Datasets citing this paper:
No datasets found
πΉ Spaces citing this paper:
No spaces found
==================================
For more data science resources:
β https://t.me/DataScienceT