ML Research Hub
32.8K subscribers
4.28K photos
258 videos
23 files
4.63K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ€–πŸ§  LandingAI ADE Python SDK: Streamlining AI-Powered Document Understanding

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

In the age of AI automation, extracting structured data from documents has become a key part of many business workflows. From invoices and contracts to identity documents and research papers, organizations are relying on AI models to interpret and process information accurately. LandingAI’s ADE Python SDK – an official API client for the LandingAI ADE ...

#AIPowered #DocumentUnderstanding #LandingAI #ADEPythonSDK #AIAutomation #DataExtraction
πŸ”Ή Title: Efficient Long-context Language Model Training by Core Attention Disaggregation

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18121
β€’ PDF: https://arxiv.org/pdf/2510.18121

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Expanding the Action Space of LLMs to Reason Beyond Language

πŸ”Ή Publication Date: Published on Oct 8

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07581
β€’ PDF: https://arxiv.org/pdf/2510.07581
β€’ Project Page: https://expa-rl.github.io/
β€’ Github: https://github.com/yue-zhongqi/earl

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Planned Diffusion

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18087
β€’ PDF: https://arxiv.org/pdf/2510.18087

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Unimedvl: Unifying Medical Multimodal Understanding And Generation Through Observation-Knowledge-Analysis

πŸ”Ή Publication Date: Published on Oct 17

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15710
β€’ PDF: https://arxiv.org/pdf/2510.15710
β€’ Project Page: https://uni-medical.github.io/UniMedVL_Web/
β€’ Github: https://github.com/uni-medical/UniMedVL

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Static Sandboxes Are Inadequate: Modeling Societal Complexity Requires Open-Ended Co-Evolution in LLM-Based Multi-Agent Simulations

πŸ”Ή Publication Date: Published on Oct 15

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.13982
β€’ PDF: https://arxiv.org/pdf/2510.13982

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Any-Depth Alignment: Unlocking Innate Safety Alignment of LLMs to Any-Depth

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18081
β€’ PDF: https://arxiv.org/pdf/2510.18081

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Predicting the Unpredictable: Reproducible BiLSTM Forecasting of Incident Counts in the Global Terrorism Database (GTD)

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15136
β€’ PDF: https://arxiv.org/pdf/2510.15136
β€’ Github: https://github.com/Davidavid45/Deep-Learning-in-Counterterrorism

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: When "Correct" Is Not Safe: Can We Trust Functionally Correct Patches Generated by Code Agents?

πŸ”Ή Publication Date: Published on Oct 15

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17862
β€’ PDF: https://arxiv.org/pdf/2510.17862

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Pruning Overparameterized Multi-Task Networks for Degraded Web Image Restoration

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.14463
β€’ PDF: https://arxiv.org/pdf/2510.14463
β€’ Github: https://github.com/Thomkat/MIR-L

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ€–πŸ§  Unlocking Creativity with Awesome ChatGPT Prompts: The Ultimate Guide for AI Enthusiasts

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence has transformed how we create, communicate, and innovate and at the heart of this revolution lies prompt engineering. One of the most powerful tools in this domain is the β€œAwesome ChatGPT Prompts” repository – a growing collection of creative, technical and professional prompts designed for ChatGPT and other large language models like Claude, ...

#ChatGPT #PromptEngineering #AIEnthusiasts #ArtificialIntelligence #LargeLanguageModels #AICreativity
❀1
πŸ€–πŸ§  AgentFly: The Future of Reinforcement Learning for Intelligent Language Model Agents

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

AgentFly is a cutting-edge framework developed by researchers at the Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) to revolutionize how large language models (LLMs) learn and act. It combines the power of reinforcement learning (RL) with language model agents enabling them to go beyond static prompt responses and learn through real-time feedback and experience. ...

#ReinforcementLearning #LLMs #LanguageModelAgents #ArtificialIntelligence #AgentFly #AIFramework
πŸ€–πŸ§  OpenSearch for AI Agents: Empowering Intelligent Search and Automation

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

As artificial intelligence (AI) continues to evolve, one of the most transformative shifts has been the rise of AI agents – autonomous systems capable of reasoning, interacting, and performing complex tasks. From customer support chatbots to autonomous data analysts, these agents rely heavily on efficient data retrieval mechanisms. However, traditional search systems often struggle to ...

#OpenSearch #AIAgents #IntelligentSearch #AIautomation #ArtificialIntelligence #DataRetrieval
πŸ”Ή Title: LoongRL:Reinforcement Learning for Advanced Reasoning over Long Contexts

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19363
β€’ PDF: https://arxiv.org/pdf/2510.19363

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: DaMo: Data Mixing Optimizer in Fine-tuning Multimodal LLMs for Mobile Phone Agents

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19336
β€’ PDF: https://arxiv.org/pdf/2510.19336

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: olmOCR 2: Unit Test Rewards for Document OCR

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19817
β€’ PDF: https://arxiv.org/pdf/2510.19817
β€’ Project Page: https://olmocr.allen.ai/
β€’ Github: https://github.com/allenai/olmocr

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Pico-Banana-400K: A Large-Scale Dataset for Text-Guided Image Editing

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19808
β€’ PDF: https://arxiv.org/pdf/2510.19808

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: VideoAgentTrek: Computer Use Pretraining from Unlabeled Videos

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19488
β€’ PDF: https://arxiv.org/pdf/2510.19488
β€’ Project Page: https://videoagenttrek.github.io/
β€’ Github: https://github.com/xlang-ai/VideoAgentTrek

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: TheMCPCompany: Creating General-purpose Agents with Task-specific Tools

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19286
β€’ PDF: https://arxiv.org/pdf/2510.19286
β€’ Github: https://github.com/Reza-esfandiarpoor/the-mcp-company

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19338
β€’ PDF: https://arxiv.org/pdf/2510.19338

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ColorAgent: Building A Robust, Personalized, and Interactive OS Agent

πŸ”Ή Publication Date: Published on Oct 22

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.19386
β€’ PDF: https://arxiv.org/pdf/2510.19386
β€’ Github: https://github.com/MadeAgents/mobile-use

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT