ML Research Hub
32.8K subscribers
4.32K photos
263 videos
23 files
4.67K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
πŸ”Ή Title: MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17519
β€’ PDF: https://arxiv.org/pdf/2510.17519
β€’ Project Page: https://github.com/Shopee-MUG/MUG-V
β€’ Github: https://github.com/Shopee-MUG/MUG-V

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Video Reasoning without Training

πŸ”Ή Publication Date: Published on Oct 19

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17045
β€’ PDF: https://arxiv.org/pdf/2510.17045

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: ssToken: Self-modulated and Semantic-aware Token Selection for LLM Fine-tuning

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18250
β€’ PDF: https://arxiv.org/pdf/2510.18250

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: DSI-Bench: A Benchmark for Dynamic Spatial Intelligence

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18873
β€’ PDF: https://arxiv.org/pdf/2510.18873
β€’ Project Page: https://dsibench.github.io/
β€’ Github: https://github.com/SpatialVision/dsibench

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Unleashing Scientific Reasoning for Bio-experimental Protocol Generation via Structured Component-based Reward Mechanism

πŸ”Ή Publication Date: Published on Oct 17

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15600
β€’ PDF: https://arxiv.org/pdf/2510.15600

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Mono4DGS-HDR: High Dynamic Range 4D Gaussian Splatting from Alternating-exposure Monocular Videos

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18489
β€’ PDF: https://arxiv.org/pdf/2510.18489
β€’ Project Page: https://liujf1226.github.io/Mono4DGS-HDR/
β€’ Github: https://github.com/LiuJF1226/Mono4DGS-HDR

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: EvoSyn: Generalizable Evolutionary Data Synthesis for Verifiable Learning

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17928
β€’ PDF: https://arxiv.org/pdf/2510.17928
β€’ Github: https://github.com/kinza99/openevolve

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/Elynden/AgentBench-EvoSyn
β€’ https://huggingface.co/datasets/Elynden/LiveCodeBench-EvoSyn

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: AlphaQuanter: An End-to-End Tool-Orchestrated Agentic Reinforcement Learning Framework for Stock Trading

πŸ”Ή Publication Date: Published on Oct 16

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.14264
β€’ PDF: https://arxiv.org/pdf/2510.14264
β€’ Project Page: https://alphaquanter.github.io/
β€’ Github: https://github.com/AlphaQuanter/AlphaQuanter

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: PRISMM-Bench: A Benchmark of Peer-Review Grounded Multimodal Inconsistencies

πŸ”Ή Publication Date: Published on Oct 18

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.16505
β€’ PDF: https://arxiv.org/pdf/2510.16505
β€’ Github: https://github.com/da-luggas/prismm-bench

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Extracting alignment data in open models

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18554
β€’ PDF: https://arxiv.org/pdf/2510.18554

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ”Ή Title: PokeeResearch: Effective Deep Research via Reinforcement Learning from AI Feedback and Robust Reasoning Scaffold

πŸ”Ή Publication Date: Published on Oct 17

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.15862
β€’ PDF: https://arxiv.org/pdf/2510.15862
β€’ Github: https://github.com/Pokee-AI/PokeeResearchOSS

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Is Multilingual LLM Watermarking Truly Multilingual? A Simple Back-Translation Solution

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18019
β€’ PDF: https://arxiv.org/pdf/2510.18019
β€’ Github: https://github.com/asimzz/steam

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
❀1
πŸ€–πŸ§  Mastering Large Language Models: Top #1 Complete Guide to Maxime Labonne’s LLM Course

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...

#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
πŸ”Ή Title: GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.17699
β€’ PDF: https://arxiv.org/pdf/2510.17699
β€’ Github: https://github.com/3145tttt/GAS

πŸ”Ή Datasets citing this paper:
β€’ https://huggingface.co/datasets/bayes-group-diffusion/GAS-teachers

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ€–πŸ§  Enhancing AI Agent Capabilities with Glean Agent Toolkit: A Complete Guide for Developers

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

The evolution of AI agents has transformed how businesses manage knowledge, automate workflows and deliver intelligent support. However, one major challenge remains how to effectively connect these AI agents to enterprise data and productivity tools. This is where the Glean Agent Toolkit steps in. Developed by Glean, a leader in enterprise knowledge discovery, this open-source ...

#AIAgents #GleanAgentToolkit #EnterpriseAI #ArtificialIntelligence #DeveloperTools #KnowledgeDiscovery
πŸ”Ή Title: Think with 3D: Geometric Imagination Grounded Spatial Reasoning from Limited Views

πŸ”Ή Publication Date: Published on Oct 21

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18632
β€’ PDF: https://arxiv.org/pdf/2510.18632

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ€–πŸ§  The Ultimate #1 Collection of AI Books In Awesome-AI-Books Repository

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the 21st century. From powering self-driving cars to enabling advanced conversational AI like ChatGPT, AI is redefining how humans interact with machines. However, mastering AI requires a strong foundation in theory, mathematics, programming and hands-on experimentation. For enthusiasts, students and professionals seeking ...

#ArtificialIntelligence #AIBooks #MachineLearning #DeepLearning #AIResources #TechBooks
πŸ€–πŸ§  LandingAI ADE Python SDK: Streamlining AI-Powered Document Understanding

πŸ—“οΈ 22 Oct 2025
πŸ“š AI News & Trends

In the age of AI automation, extracting structured data from documents has become a key part of many business workflows. From invoices and contracts to identity documents and research papers, organizations are relying on AI models to interpret and process information accurately. LandingAI’s ADE Python SDK – an official API client for the LandingAI ADE ...

#AIPowered #DocumentUnderstanding #LandingAI #ADEPythonSDK #AIAutomation #DataExtraction
πŸ”Ή Title: Efficient Long-context Language Model Training by Core Attention Disaggregation

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18121
β€’ PDF: https://arxiv.org/pdf/2510.18121

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Expanding the Action Space of LLMs to Reason Beyond Language

πŸ”Ή Publication Date: Published on Oct 8

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.07581
β€’ PDF: https://arxiv.org/pdf/2510.07581
β€’ Project Page: https://expa-rl.github.io/
β€’ Github: https://github.com/yue-zhongqi/earl

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT
πŸ”Ή Title: Planned Diffusion

πŸ”Ή Publication Date: Published on Oct 20

πŸ”Ή Paper Links:
β€’ arXiv Page: https://arxiv.org/abs/2510.18087
β€’ PDF: https://arxiv.org/pdf/2510.18087

πŸ”Ή Datasets citing this paper:
No datasets found

πŸ”Ή Spaces citing this paper:
No spaces found
==================================

For more data science resources:
βœ“ https://t.me/DataScienceT